• Title/Summary/Keyword: Fibroblast growth factor

Search Result 290, Processing Time 0.029 seconds

The Effect of Acitretin to the Expression of Vascular Endothelial Growth Factor in Psoriasis (건선(psoriasis)에서 혈관내피 성장인자(VEGF)에 대한 acitretin의 효과)

  • Kim, Chi-Yeon;Kim, Seong-Min;Kim, Gun-Do
    • Journal of Life Science
    • /
    • v.19 no.3
    • /
    • pp.327-333
    • /
    • 2009
  • Psoriasis is a well known disorder of keratinization. In this disease, several reports revealed that dermal micro vessels are increased and angiogenic factors such as vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) are over-expressed. Angiogenesis may play an important role in the progression of psoriasis. Acitretin is widely used as an anti-psoriatic drug because of its potent action on keratinocyte growth and differentiation, but its effects on angiogenesis are uncertain. The goal of this immunohistochemical study was to investigate the effects of acitretin on the expression of VEGF in psoriatic lesions of the skin. We compared the expression levels of VEGF between pre- and post-acitretin treated skin - 10 psoriatic skin lesions and 3 normal (control) skins. The expressions of VEGF in psoriatic skin lesions were significantly higher than in normal control skin. The expressions of VEGF in psoriatic skin lesions post-treatment were lower than those pre-treatment. Acitretin revealed inhibitory effects on angiogenesis by reducing the expression of angiogenic factors such as VEGF in psoriatic skin lesions. We suggest that acitretin may be useful in therapeutic approaches to psoriasis management, possibly related to angiogenesis.

Effects of glucose on metabolism and Insulin-like growth factor binding-3 expression in human fibroblasts. (사람의 섬유아세포에서 glucose 농도가 물질대사 및 Insulin-like growth factor binding protein-3의 발현에 미치는 영향)

  • Ryu, Hye-Young;Hwang, Hye-Jung;Kim, In-Hye;Ryu, Hong-Soo;Nam, Taek-Jeong
    • Journal of Life Science
    • /
    • v.17 no.5 s.85
    • /
    • pp.687-693
    • /
    • 2007
  • Insulin-like growth factor-I(IGF-I) has significant insulin-like anabolic effects which include the stimulation of glucose and amino acid uptake, as well as protein and glycogen synthesis. IGFs exist in serum and other biological fluids as complexes bound to a family of structurally related insulin-like growth factor binding proteins(IGFBPs). Six human IGFBPs can modulate the effects of IGFs on target tissues by several mechanisms, including altering the serum's half-life and the transcapillary transport of IGFs, as well as changing the availability of IGFs to specific cell surface receptors. Human fibroblasts secrete IGFBPs that can modify IGF-I action. Previous to our study using either Northern blotting, and Western blotting have shown that fibroblasts express mRNA IGFBP-3, -4, and -5, and synthesize these proteins. In addition, fibroblast cell lysates revealed that the IGFBP-3 was most abundant. For these reasons, we undertook to gain further insight into the effects of high and low glucose incubation condition on metabolism and IGFBP-3 expression. In results of metabolites and IGFBP-3 expression in GM10 cells cultivated with various glucose concentration, the consumption of glucose and accumulation of triglyceride were increased in condition of high glucose, and total protein level was decreased. in the course of time. After 5 days incubation, levels of free amino acid in medium containing glucose of high concentration glucose were higher than in conditions of low glucose. Although the levels of IGFBP-3 protein and mRNA levels were increased in low glucose, and IGFBP-3 was not affected by any pretense. Taken together, we suggest that the study of growth factors, like IGFs, might be a possible model of diabetes militus in cell, although the results in cell models were not in accord with in vivo.

Change of Extracellular Matrix of Human Vocal Fold Fibroblasts by Vibratory Stimulation (진동이 성대세포주의 세포외기질 변화에 대한 연구)

  • Kim, Ji Min;Shin, Sung-Chan;Kwon, Hyun-Keun;Cheon, Yong-Il;Ro, Jung Hoon;Lee, Byung-Joo
    • Journal of the Korean Society of Laryngology, Phoniatrics and Logopedics
    • /
    • v.32 no.1
    • /
    • pp.15-23
    • /
    • 2021
  • Background and Objectives During speech, the vocal folds oscillate at frequencies ranging from 100-200 Hz with amplitudes of a few millimeters. Mechanical stimulation is an essential factor which affects metabolism of human vocal folds. The effect of mechanical vibration on the cellular response in the human vocal fold fibroblasts cells (hVFFs) was evaluated. Materials and Method We created a culture systemic device capable of generating vibratory stimulations at human phonation frequencies. To establish optimal cell culture condition, cellular proliferation and viability assay was examined. Quantitative real time polymerase chain reaction was used to assess extracellular matrix (ECM) related and growth factors expression on response to changes in vibratory frequency and amplitude. Western blot was used to investigate ECM and inflammation-related transcription factor activation and its related cellular signaling transduction pathway. Results The cell viability was stable with vibratory stimulation within 24 h. A statistically significant increase of ECM genes (collagen type I alpha 1 and collagen type I alpha 2) and growth factor [transforming growth factor β1 (TGF-β1) and fibroblast growth factor 1 (FGF-1)] observe under the experimental conditions. Vibratory stimulation induced transcriptional activation of NF-κB by phosphorylation of p65 subunit through cellular Mitogen-activated protein kinases activation by extracellular signal regulated kinase and p38 mitogen-activated protein kinases (MAPKs) phosphorylation on hVFFs. Conclusion This study confirmed enhancing synthesis of collagen, TGF-β1 and FGF was testified by vibratory stimulation on hVFFs. This mechanism is thought to be due to the activation of NF-κB and MAPKs. Taken together, these results demonstrate that vibratory bioreactor may be a suitable alternative to hVFFs for studying vocal folds cellular response to vibratory vocalization.

Prognostic Value of Vascular Endothelial Growth Factor (VEGF) and Basic Fibroblast Growth Factor (bFGF) Expression in Resected Non-small Cell Lung Cancer (수술로 절제된 비소세포폐암 조직에서 예후인자로서 VEGF와 bFGF 발현의 의의)

  • Kim, Seung Joon;Lee, Jung Mi;Kim, Jin Sook;Kang, Ji Young;Lee, Sang Hak;Kim, Seok Chan;Lee, Sook Young;Kim, Chi Hong;Ahn, Joong Hyun;Kwon, Soon Seog;Kim, Young Kyoon;Kim, Kwan Hyoung;Moon, Hwa Sik;Song, Jeong Sup;Park, Sung Hak;Moon, Seok Hwan;Wang, Yeong Pil
    • Tuberculosis and Respiratory Diseases
    • /
    • v.64 no.3
    • /
    • pp.200-205
    • /
    • 2008
  • Background: Tumor angiogenesis plays an important role in tumor growth, maintenance and metastatic potential. Tumor tissue produces many types of angiogenic growth factors. Vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) have both been implicated to have roles in tumor angiogenesis. In this study, the expression of tissue VEGF and bFGF from non-small cell lung cancer (NSCLC) patients were analyzed. Methods: We retrospectively investigated 35 patients with a histologically confirmed adenocarcinoma or squamous cell carcinoma of the lung, where the primary curative approach was surgery. An ELISA was employed to determine the expression of VEGF and bFGF in extracts prepared from 35 frozen tissue samples taken from the cancer patients. Results: VEGF and bFGF concentrations were significantly increased in lung cancer tissue as compared with control (non-cancerous) tissue. The VEGF concentration was significantly increased in T2 and T3 cancers as compared with T1 cancer. Expression of VEGF was increased in node-positive lung cancer tissue as compared with node-negative lung cancer tissue (p=0.06). VEGF and bFGF expression were not directly related to the stage of lung cancer and patient survival. Conclusion: Expression of VEGF and bFGF were increased in lung cancer tissue, and the expression of VEGF concentration in lung cancer tissue was more likely related with tumor size and the presence of a lymph node metastasis than the expression of bFGF. However, in this study, expression of both VEGF and bFGF in tissue were not associated with patient prognosis.

Establishment and Characterization of Permanent Cell Lines from Oryzias dancena Embryos

  • Lee, Dongwook;Kim, Min Sung;Nam, Yoon Kwon;Kim, Dong Soo;Gong, Seung Pyo
    • Fisheries and Aquatic Sciences
    • /
    • v.16 no.3
    • /
    • pp.177-185
    • /
    • 2013
  • The development of species-specific fish cell lines has become a valuable tool for biological research. In recent years, marine medaka Oryzias dancena has been recognized as a good experimental model fish but there are no reports of establishment of cell lines from this fish. In this study, two cell lines from O. dancena blastula embryos were established from 41 total trials (4.9%). The two cell lines displayed typical in vitro morphology and have been cultured for >121 passages, which corresponds to 293 days. The doubling times of the cell lines were 29.84 and 28.59 h, respectively, and both possessed the potential to expand in a clonal manner, albeit with significant differences between the two cell lines. The absence of any of the four main medium supplements; i.e., fish serum, fetal bovine serum, basic fibroblast growth factor, and medaka embryo extract, significantly inhibited growth. The proportion of cells possessing normal chromosome number was 45% and 46.7% of the cell lines, respectively. Taken together, two cell lines that proliferate continuously were established from marine medaka and these cell lines may provide a basic tool for characterizing the unique features of this fish species.

Isolation and In Vitro Culture of Vascular Endothelial Cells from Mice

  • Choi, Shinkyu;Kim, Ji Aee;Kim, Kwan Chang;Suh, Suk Hyo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.19 no.1
    • /
    • pp.35-42
    • /
    • 2015
  • In cardiovascular disorders, understanding of endothelial cell (EC) function is essential to elucidate the disease mechanism. Although the mouse model has many advantages for in vivo and in vitro research, efficient procedures for the isolation and propagation of primary mouse EC have been problematic. We describe a high yield process for isolation and in vitro culture of primary EC from mouse arteries (aorta, braches of superior mesenteric artery, and cerebral arteries from the circle of Willis). Mouse arteries were carefully dissected without damage under a light microscope, and small pieces of the vessels were transferred on/in a Matrigel matrix enriched with endothelial growth supplement. Primary cells that proliferated in Matrigel were propagated in advanced DMEM with fetal calf serum or platelet-derived serum, EC growth supplement, and heparin. To improve the purity of the cell culture, we applied shearing stress and anti-fibroblast antibody. EC were characterized by a monolayer cobble stone appearance, positive staining with acetylated low density lipoprotein labeled with 1,1'-dioctadecyl-3,3,3',3'-tetramethyl-indocarbocyanine perchlorate, RT-PCR using primers for von-Willebrand factor, and determination of the protein level endothelial nitric oxide synthase. Our simple, efficient method would facilitate in vitro functional investigations of EC from mouse vessels.

Anti Angiogenic Effects of Isorhamnetin Isolated from Persicaria thunbergii

  • Lee Hyo-Jung;Kim Kwan-Hyun;Baek Nam-In;Kim Dae-Keun;Yang Deok-Chun;Kim Sung-Hoon
    • Plant Resources
    • /
    • v.8 no.3
    • /
    • pp.209-216
    • /
    • 2005
  • Persicaria thunbergii has been utilized for the treatment of cancer as a folk medicine. We examined the effect of isorhamnetin, a flavonoid isolated from Persicaria thunbergii, on angiogenesis in vitro and in vivo. Basic fibroblast growth factor (bFGF) is a potent angiogenic factor found in various tumors. In this study, we found that the isorhamnetin decreased bFGF-induced human umbilical vein endothelial cells (HUVECs) proliferation and migration in a concentration-dependent manner (5, 10 and $20\;{\mu}M$) whereas, it did not inhibit bFGF-induced capillary-like formation of HUVECs. The chicken chorioallantoic membrane assay revealed that addition of isorhamnetin (10, 20 and $40\;{\mu}M$) displayed an antiangiogenic effect in vivo. These results suggest that the isorhamnetin inhibits the proliferation and migration of endothelial cells induced by bFGF, which may explain its anti-angiogenic properties.

  • PDF

Effects of Red Deer Antlers on Cutaneous Wound Healing in Full-thickness Rat Models

  • Gu, LiJuan;Mo, EunKyoung;Yang, ZhiHong;Fang, ZheMing;Sun, BaiShen;Wang, ChunYan;Zhu, XueMei;Bao, JianFeng;Sung, ChangKeun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.2
    • /
    • pp.277-290
    • /
    • 2008
  • The process of wound repair involves an ordered sequence of events such as overlapping biochemical and cellular events that, in the best of circumstances, result in the restoration of both the structural and functional integrity of the damaged tissue. An important event during wound healing is the contraction of newly formed connective tissues by fibroblasts. The polypeptide growth factors, like transforming growth factor-${\beta}$(TGF-${\beta}$, insulin-like growth factor I (IGF- I) and epidermal growth factor (EGF), play very important mediator roles in the process of wound contraction. Deer antlers, as models of mammalian regeneration, are cranial appendages that develop after birth as extensions of a permanent protuberance (pedicle) on the frontal bone. Antlers contain various growth factors which stimulate dermal fibroblast growth. They are involved in digestion and respiration and are necessary for normal wound healing and skin health. In order to investigate and evaluate the effects of red deer antlers on skin wound site, the speed of full-thickness skin wound healing and the expression of IGF-I, TGF-${\beta}$ and EGF in skin wounds, three groups of skin full-thickness rat models with a high concentration of antler ointment, a low concentration of antler ointment and without antler ointment were compared. At post-injury days 0, 2, 4, 8, 16, 20, 32, 40 and 60, the skin wound area was measured, the expressions of IGF-I, TGF- ${\beta}$ and EGF mRNA were detected by reverse transcriptase polymerase chain reaction (RT-PCR) and collagen formation by sirius red dye and the localization of IGF-I, TGF-${\beta}$ and EGF peptides were inspected by histological immunohistochemical techniques. Wound healing was significantly more rapid in antler treated skins. In addition, the wound treated with a high concentration antler ointment, a low concentration antler ointment, and the control closed completely at post-injury day 40, day 44 and day 60, respectively. Via RT-PCR, the expressions of IGF-I (day 8 and day 16), TGF-${\beta}$(day 8, day 16 and day 20) and EGF (day 4, day 8, day 16, and day 32) were obviously up-regulated in high concentration antler-treated skins compared to control skins. Similar results could be seen in the histological detection of collagen dye and immunohistochemical methods using the corresponding polyclone antibodies of IGF-I, TGF-${\beta}$ and EGF. These results illustrate that antlers stimulate and accelerate the repair of cutaneous wounds.

Optimization of growth inducing factors for colony forming and attachment of bone marrow-derived mesenchymal stem cells regarding bioengineering application

  • Quan, Hongxuan;Kim, Seong-Kyun;Heo, Seong-Joo;Koak, Jai-Young;Lee, Joo-Hee
    • The Journal of Advanced Prosthodontics
    • /
    • v.6 no.5
    • /
    • pp.379-386
    • /
    • 2014
  • PURPOSE. These days, mesenchymal stem cells (MSCs) have received worldwide attention because of their potentiality in tissue engineering for implant dentistry. The purpose of this study was to evaluate various growth inducing factors in media for improvement of acquisition of bone marrow mesenchymal stem cells (BMMSCs) and colony forming unit-fibroblast (CFU-F). MATERIALS AND METHODS. The mouse BMMSCs were freshly obtained from female C3H mouse femur and tibia. The cells seeded at the density of $10^6$/dish in media supplemented with different density of fetal bovine serum (FBS), $1{\alpha}$, 25-dihydroxyvitamin (VD3) and recombinant human epidermal growth factor (rhEGF). After 14 days, CFU-F assay was conducted to analyze the cell attachment and proliferation, and moreover for VD3, the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay was additionally conducted. RESULTS. The cell proliferation was increased with the increase of FBS concentration (P<.05). The cell proliferation was highest at the density of 20 ng/mL rhEGF compared with 0 ng/mL and 200 ng/mL rhEGF (P<.05). For VD3, although the colony number was increased with the increase of its concentration, the difference was not statistically significant (P>.05). CONCLUTION. FBS played the main role in cell attachment and growth, and the growth factor like rhEGF played the additional effect. However, VD3 did not have much efficacy compare with the other two factors. Improvement of the conditions could be adopted to acquire more functional MSCs to apply into bony defect around implants easily.

Expression Properties and Skin Permeability of Human Basic Fibroblast Growth Factor with or without PTD Fused to N- or C-terminus in Escherichia coli (대장균 발현시스템에서 단백질 전달 도메인 PTD가 인간 섬유아세포 성장인자(FGF2)의 N- 또는 C-말단에 결합 되었을 때 미치는 재조합 단백질 복합체의 발현 특성과 피부 투과능력)

  • Park, In-Sun;Choe, Chung-Hyeon;Kwon, Bo-Ra;Choi, Young-Ji;Kwon, Tae-Ho;Yu, Kang-Yeol;Lee, Juhyung;Choo, Young-Moo
    • Journal of Life Science
    • /
    • v.28 no.3
    • /
    • pp.275-283
    • /
    • 2018
  • Human fibroblast growth factor (FGF) has the potential to be a commercially important therapeutic or cosmeceutical agent due to its ability to generate tissue and heal wounds. Granting permeability into skin tissues increases the therapeutic effects of FGF. Thus, several researchers have attempted the fusion of FGF conjugates with protein transduction domains (PTDs) to investigate the transduction ability and therapeutic effects of FGF. Less is known, however, about whether the location of PTD fused to the N- or C-terminus of FGF proteins has a significant impact on the folding and stability in Escherichia coli, and eventually, on transduction. Here, we report cloning of human basic fibroblast growth factor (FGF2) as a control and FGF2 with PTD fused to the N- or C-terminal ends of FGF proteins by an overlap extension PCR. We performed expression, verified expression properties of recombinant FGF2 without or with PTD fused to the N-terminus and the C-terminus, and investigated transduction ability into tissue by treating the dorsal skin of mice subjects. As a result, FGF2 and FGF2-PTD (fused to C-terminus) fusion protein were expressed as soluble forms suitable for straight-forward purification, unlike insoluble PTD-FGF2 (fused to N-terminus), but only FGF2-PTD fusion protein could transduce into the dorsal skin tissue of the mice subjects. Our results suggest that FGF2 with PTD fused to the C-terminus is more efficient than other options in terms of expression, purification, and delivery into skin tissue, as it does not require labor-intensive, costly, and time-consuming methods.