• Title/Summary/Keyword: Fiber-to-Fiber connection

Search Result 141, Processing Time 0.028 seconds

Development of Automatic Optical Fiber Alignment System and Optimal Aligning Algorithm (자동 광 정렬시스템 및 최적 광 정렬알고리즘의 개발)

  • Um, Chul;Kim, Byung-Hee;Choi, Young-Seok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.4
    • /
    • pp.194-201
    • /
    • 2004
  • Optical fibers are indispensable fer optical communication systems that transmit large volumes of data at high speed. But the aligning technology under the sub-micron accuracy is required for the precise axis adjustment and connection. For the purpose of precise alignment of the optical arrays, in this research, we have developed the 12-axis(with 8 automated axis and 4 manual axis) automatic optical fiber alignment system including the image processing-based searching system, the automatic loading system using the robot and the suction toot and the automatic UV bonding system. In order to obtain the sub-micron alignment accuracy, two 4-axis PC-based motion controllers and the two 50nm resolution 6-aixs micro-stage actuated by micro stepping motors are adopted. The fiber aligning procedure consists of two steps. Firstly, the optical wave guide and an input optical array are aligned by the 6-axis input micro-stage with the IR camera. The image processing technique is introduced to reduce primary manual aligning time and result in achieving the 50% decrease of aligning time. Secondly, the IR camera is replaced by the output micro-stage and a wave guide and two optical arrays are aligned simultaneously before the laser power intensity delivered to the optical powermeter reached the threshold value. When the aligning procedure is finished, the wave guide and arrays are W bonded. The automatic loading/unloading system is also introduced and the entire wave guide handing time is reduced significantly compared to the former commercial aligning system.

Improved Transmission of UHSC Column Loads by Puddling of Fiber Reinforced UHSC (강섬유 보강 초고강도 콘크리트의 확대 타설을 통한 기둥 하중 전달 성능 향상)

  • Lee, Joo-Ha;Yang, Jun-Mo;Lee, Seung-Hoon;Yoon, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.2
    • /
    • pp.209-216
    • /
    • 2007
  • This study reports on the structural characteristics of slab-column connections using fiber-reinforced ultra-high-strength concrete (UHSC). Compression tests were performed on two slab-column and four isolated column specimens. In the column load tests, slab loads were also applied on the slab-column specimens so that the actual confinement condition at the slab-column joint was considered. The main parameter investigated was the "puddling" of fiber-reinforced UHSC. This paper also investigates the effects of some parameters, such as confinement of slab concrete, steel fibers, and concrete strength of the joint, related to the ability of the slab-column specimens and isolated column specimens without the surrounding slab to transmit axial loads from the UHSC columns through slab-column connections. Furthermore, the ACI Code (2005) and the CSA Standard (2004) are compared to the experimental results. The beneficial effects of the puddling of fiber-reinforced UHSC on the transmission of column loads through slab-column connections are demonstrated.

High Reliability Optical Splitters Composed of Planar Lightwave Circuits (PLC Optical Splitter(1${\times}$32)의 신뢰성 평가)

  • Gu, Hyeon-Deok;Im, Hae-Yong;Park, Jong-Hyeok;Park, Gang-Hui
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2008.07a
    • /
    • pp.265-266
    • /
    • 2008
  • The environmental and mechanical reliability of planar lightwave circuit (PLC)-type optical splitter modules is investigated with references [1, 3]. The module is composed of Y-branching silica-based waveguides on Si connected to optical fiber with UV-curable adhesives and is packaged in a metal case which is filled with humidity-resistant resin. High optical performance such as low loss, low reflection, and thermal stability are obtained through the use of this fiber connection technique. Ten reliability tests including long-term environmental and mechanical and ALT test were carried out for more then ten $1{\times}32$ channel PLC splitter modules.

  • PDF

A study on the modular design of smart photonic sports clothing based on optical fiber technology (광섬유 기반 스마트 포토닉 스포츠 의류의 모듈화 디자인 연구)

  • Park, Soo-Jin;Park, Sun-Hyeong;Lee, Joo-Hyeon
    • Science of Emotion and Sensibility
    • /
    • v.12 no.4
    • /
    • pp.393-402
    • /
    • 2009
  • The objectives of this study is to search for systematic modular design methods for smart photonic sports clothing based on light emitting optical fiber technology related to smart photonic clothing, and to present a variety of modular design models based on optical fiber and light emitting module assembly technology, both of which stand on the basis of body measurements. To achieve the objectives, this paper firstly reviewed the concept of smart photonic clothing and related technologies, and an examination of the concepts of modularization and its designs, as well as examples of modularization used in various fields. To decide the size and attachment point of optical fiber and light emitting modules, the study considered the close connection between modularization and body measurements. Along with body measurements, to derive the most suitable region to attach the optical fiber and light emitting modules, appropriate attachment locations for computing devices and regions which are marginally affected by body movements, were analyzed. On the basis of the results, a modular model of a sports jacket with smart photonic functions was designed and presented, with the focus on the wearer's safety and protection function, which was judged to be the most needed and appropriate function among the three functions of smart photonic clothing related to sports clothing. The results of this study is expected to be useful as basic data for future smart photonic clothing design research.

  • PDF

The Study of the Optical Current Sensor Using Magneto-Optic Effects (자기광학효과를 이용한 광전류센서에 관한 연구)

  • 전재일;이정수;송시준;정철우;박원주;이광식;김정배;김민수
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.17 no.6
    • /
    • pp.47-53
    • /
    • 2003
  • In this paper, we described the laboratory layout of the optical CT in connection with the measurement of large current based on Magneto-Optic Effects. It was used He-Ne laser for light source and was used PIN-Photodiode for light receiver. The sensing section was organized by winding optical fiber around conductor on the concept that the rotation angle of polarizing axis by Faraday Effect is proportional to the applied current in to conduction. The optical signal passed through optical fiber sensor was induced to analyzer arranged in the direction of $\theta$ for input polarization, and then analyzed its rotation angle and researched on operating characteristics of optical CT for 60[Hz] AC current measurement from l00[A] to 1000[A] was carried out. In this results, the output signals induced linearly with the current and proved that the intensity is increased with increasing turns of fiber through output differences which in accordance with turns of fiber and we verified that there is not only difference of the output with the medium between electric field and optical fiber, but also the lineality. Measuring the references and output intensities of the optical CT, ratio errors were within $\pm$7%. This confirmed that error rate will be improved by each medium and turns.

A study on chemical bonding characteristics of the interface between curved FRP panels for consecutive structural assembly (곡면 FRP 패널 부재 연속시공을 위한 연결부 화학적 접합 특성에 관한 연구)

  • Lee, Gyu-Phil;Shin, Hyu-Soung;Jung, Woo-Tai
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.14 no.1
    • /
    • pp.79-91
    • /
    • 2012
  • A curved fiber reinforced polymer (FRP) panel is produced with a certain width depending on allowances of manufacturing processes and facilities. An targeted arch-shaped structure could be built by sequential connection of series of the FRP panels. The connection manner between the FRP panels could be given by chemical treatment, mechanical treatment and hybrid method. Among those, the connection between the panels by chemical treatment is commonly adopted. Therefore, For an optimized design of the connected part between FRP pannels, a number of direct shear tests have been undertaken in terms of a number of parameters: surface treatment conditions, bonding materials, etc.. As results, surface grinding condition by sand paper or surface treatment by sand blasting appear properly acceptable methods, and epoxy and acryl resins are shown to be effective bonding materials for the purpose in this study.

Development of Hybrid FRP-Concrete Composite Pile Connection (하이브리드 FRP-Concrete 복합말뚝의 연결부의 개발)

  • Lee, Hyoung-Kyu;Park, Joon-Seok
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.5 no.4
    • /
    • pp.52-57
    • /
    • 2014
  • Due to the advantageous mechanical properties of the fiber reinforced polymeric plastics(FRP), their application in the construction industries is ever increasing trend, as a substitute of structural steel which is highly vulnerable under hazardous environmental conditions (i.e., corrosion, humidity, etc.). In this study, hybrid FRP-concrete composite pile (HCFFT) connection is suggested. The HCFFT is consisted of pultruded FRP unit module, filament wound FRP which is in the outside of mandrel composed of circular shaped assembly of pultruded FRP unit modules, and concrete which is casted inside of the circular tube shaped hybrid FRP pile. Therefore, pultruded FRP can increase the flexural load carrying capacity, filament wound FRP and concrete filled inside can increase axial load carrying capacity. In the study, connection capacity of HCFFT(small and mid size) is investigated throughout experiments and finite element method. From the results of experiments, we suggested the connection methods about HCFFT pile connection.

Single and multi-material topology optimization of CFRP composites to retrofit beam-column connection

  • Dang, Hoang V.;Lee, Dongkyu;Lee, Kihak
    • Computers and Concrete
    • /
    • v.19 no.4
    • /
    • pp.405-411
    • /
    • 2017
  • Carbon Fiber Reinforced Plastic (CFRP) has commonly been used to strengthen existing RC structures. Wrapping the whole component with CFRP is an effective method and simple to execute. Besides, specific configuration of CFRP sheets (L, X and T shape) has also been considered in some experiments to examine CFRP effects in advance. This study aimed to provide an optimal CFRP configuration to effectively retrofit the beam-column connection using continuous material topology optimization procedure. In addition, Moved and Regularized Heaviside Functions and penalization factors were also considered. Furthermore, a multi-material procedure was also used to compare with the results from the single material procedure.

A Study on Detection of a Critical Spot and the Securing Safety Method of CFRP Bicycle Forks by Finite Element Method (유한요소법을 이용한 CFRP 자전거 포크의 취약부 탐색 및 안전성 확보 방안 연구)

  • Lee, Su-Yeong;Lee, Nam Ju;Choi, Ung-Jae;Kim, Hong Seok;Shin, Ki-Hoon;Cheong, Seong-Kyun
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.6
    • /
    • pp.1-5
    • /
    • 2016
  • A bicycle is one of the most popular sporting goods in view of a sport activity and a human health. Metallic materials such as steel, aluminum, etc. were mainly used to the bicycle fork in the past. Nowadays, the carbon fiber reinforced composite materials are widely used to the manufacturing of a bicycle fork to reduce the weight and to increase the efficiency. Safety is a most important design parameter of a bicycle fork even if the weight and cost reduction are important. Bicycle failure may happen at the critical spot of a bicycle fork and cause the accident. In this paper, the composite bicycle fork will be analyzed to secure the safety and detect a critical spot by using the finite element method with Tsai-Wu failure criterion. The stress data were obtained for the laminated composites with various number of plies and fiber orientation under the bending load. Thus, design concept of a bicycle fork was proposed to secure the safety of a bicycle. The finite element analysis results show that the connection area between a steer tube and a fork blade is critical spot, and 75 or more layers of 0 degree are needed to secure the safety of a bicycle fork.

Design of multiphase carbon fiber reinforcement of crack existing concrete structures using topology optimization

  • Nguyen, Anh P.;Banh, Thanh T.;Lee, Dongkyu;Lee, Jaehong;Kang, Joowon;Shin, Soomi
    • Steel and Composite Structures
    • /
    • v.29 no.5
    • /
    • pp.635-645
    • /
    • 2018
  • Beam-column joints play a significant role in static and dynamic performances of reinforced concrete frame structures. This study contributes a numerical approach of topologically optimal design of carbon fiber reinforced plastics (CFRP) to retrofit existing beam-column connections with crack patterns. In recent, CFRP is used commonly in the rehabilitation and strengthening of concrete members due to the remarkable properties, such as lightweight, anti-corrosion and simplicity to execute construction. With the target to provide an optimal CFRP configuration to effectively retrofit the beam-column connection under semi-failure situation such as given cracks, extended finite element method (X-FEM) is used by combining with multi-material topology optimization (MTO) as a mechanical description approach for strong discontinuity state to mechanically model cracked structures. The well founded mathematical formulation of topology optimization problem for cracked structures by using multiple materials is described in detail in this study. In addition, moved and regularized Heaviside functions (MRHF), that have the role of a filter in multiple materials case, is also considered. The numerical example results illustrated in two cases of beam-column joints with stationary cracks verify the validity, benefit and supremacy of the proposed method.