• 제목/요약/키워드: Fiber-reinforced

검색결과 4,416건 처리시간 0.029초

An Experimental Study on the Fracture Strength of Steel Fiber Reinforced Concrete

  • Chai, Won-Kyu
    • International Journal of Safety
    • /
    • 제11권1호
    • /
    • pp.19-21
    • /
    • 2012
  • In this thesis, fracture test was performed in order to investigate the fracture strength of SFRC(steel fiber reinforced concrete) structures. The relationship between the compressive force and strain value of SFRC specimens were observed under the compressive strength test. From the fracture test results, the relationship between percentage of fiber by volume, compressive strength, elastic modulus, and tensile strength of SFRC beams were studied, and the measured elastic modulus of SFRC were compared with the calculated elastic modulus by ACI committee 544.

An Experimental Study on the Flexural Strength of Fiber Reinforced Concrete Structures

  • Chai, Won-Kyu
    • International Journal of Safety
    • /
    • 제11권2호
    • /
    • pp.26-28
    • /
    • 2012
  • In this thesis, fracture tests were carried out in order to investigate the flexural strength behavior of FRC(fiber reinforced concrete) structures. FRC beams were used in the tests, the initial crack load and the ultimate load of the beams were observed under the static loading. According to the results, the ultimate loads increase with the fiber content, and these tendency is clear in the specimens with large fiber aspect ratio. From the results of the regression analysis, practical formulae for predicting the flexural strength of FRC were suggested.

연속섬유강화 플라스틱 복합재료의 컵형 압축성형성에 관한 연구 (A Study on the Cup-Type Compression Molding for Continuous Fiber-Reinforced Poymeric Composites)

  • 오영준;김형철;조선형;김이곤
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1997년도 추계학술대회논문집
    • /
    • pp.176-181
    • /
    • 1997
  • During a compression molding of continuous fiber reinforced composites, the separation of matrix and fiber is caused by the flow of the molding process. As the characteristics of the products are greatly dependent on the separation, it is very important to clarify the separation in relation to molding condition, degree of needle punching number on the degree of nonhomogeneity are studied.

  • PDF

FRP 보강근을 사용한 콘크리트 보의 처짐예측 (Deflection Prediction of Concrete Beams Reinforced with Fiber Reinforced Polymer(FRP) Bars)

  • 김재생;서대원;한범석;안종문;신성우;박영환
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 춘계학술발표회 논문집(I)
    • /
    • pp.114-117
    • /
    • 2006
  • Concrete beams reinforced with fiber reinforced polymer (FRP) bars exhibit large deflection and crack width as compared to concrete beams reinforced steel due to modulus of elasticity of FRP bars. Current design code for prediction and crack width developed in concrete structures reinforced with steel bars may not be used for concrete beams reinforced with FRP bars. Thus a number of researcher have attempted to propose modifications to the ACI 318 empirical equation for estimating the effective moment of inertia of reinforced concrete beams. Others used numerical method to calculate the deflection. The purpose of this paper is to evaluation of methods of ACI 440.1 R-01, ISIS Canada design manual, and others for predicting deflection for glass fiber reinforced polymer reinforced concrete beams.

  • PDF

탄소섬유강화 에폭시수지의 기계적 성질에 미치는 나노입자크기의 영향 (Nanoparticle Size Effect on Mechanical Properties of Carbon Fiber-reinforced Polymer Composites)

  • 문창권;김부안
    • 한국해양공학회지
    • /
    • 제29권2호
    • /
    • pp.186-190
    • /
    • 2015
  • $TiO_2$ nanoparticles can be used to improve the performance of carbon fiber-reinforced epoxy resin composites. In this study, the effect of the size of $TiO_2$ nanoparticles on the mechanical properties of carbon fiber-reinforced epoxy resin composites was investigated. The size of the $TiO_2$ nanoparticles was easily controlled using heat treatment. The size of the $TiO_2$ nanoparticles for this study were20nm, 100nm, and 200nm. Three types of carbon fibers with different diameters were also used in this study. The carbon fiber-reinforced epoxy resin composites with 20-nm $TiO_2$ powder showed the highest tensile strength compared to the other types of CFRP, regardless of the fiber maker or fiber diameter. The size of the $TiO_2$ powder and the diameter of the carbon fiber strongly affected the interfacial properties of all kinds of CFRP in this study.

Effect of strain level on strength evaluation of date palm fiber-reinforced sand

  • Bahrami, Mohammad;Marandi, Seyed Morteza
    • Geomechanics and Engineering
    • /
    • 제21권4호
    • /
    • pp.327-336
    • /
    • 2020
  • Conventional researches on the behavior of fiber-reinforced and unreinforced soils often investigated the failure point. In this study, a concept is proposed in the comparison of the fiber-reinforced with unreinforced sand, by estimating the strength and strength ratio at different levels of strain. A comprehensive program of laboratory drained triaxial compression test was performed on compacted sand specimens, with and without date palm fiber. The fiber inclusion used in triaxial test specimens was form 0.25%-1.0% of the sand dry weight. The effect of the fiber inclusion and confining pressure at 0.5%, 1.0%, 1.5%, 3.0%, 6.0%, 9.0%, 12%, and 15% of the imposed strain levels on the specimen were considered and described. The results showed that, the trend and magnitude of the strength ratio is different for various strain levels. It also implies that, using failure strength from peak point or the strength corresponding to the axial strain of approximately 15% for evaluating the enhancement of strength or strength ratio, due to the reinforcement, may cause hazard and uncertainty in practical design. Therefore, it is necessary to consider the strength of fiber-reinforced specimen at the imposed strain level, compared to the unreinforced specimen.

Evaluation of The Moment Resistance Joint Strength of Larch Glulam Using Glass Fiber Reinforced Wood Plate

  • Song, Yo-Jin;Jung, Hong-Ju;Park, Hyun-Ho;Lee, Hak-Young;Hong, Soon-Il
    • Journal of the Korean Wood Science and Technology
    • /
    • 제42권5호
    • /
    • pp.571-578
    • /
    • 2014
  • As a way of developing wooden joint development, a glass fiber reinforced wood plate was manufactured to replace a steel plate. Also, the fracture toughness was evaluated. Through application to a cantilever-type specimen made of a column and a beam, the moment resistance performance was evaluated. For the fracture toughness specimen of the wood plate, 12 types were manufactured by varying the combination of a main member (veneer and plywood) and reinforcement (glass fiber sheet and glass fiber cloth). The results of the fracture toughness test indicated that the 5% yield load of the specimen using plywood was 18% higher than that of the specimen using veneer, and that the specimen reinforced by inserting glass fiber sheets between testing materials (Type-3-PS) had the highest average 5% yield load 4841 N. Thus, a moment resistance strength test was performed by applying Type-3-PS to a column-beam joint. The results of the test indicated that compared to the specimen using a steel plate and a drift pin (Type-A), the maximum moment ratio of the specimen using a glass fiber reinforced wood plate (Type-3-PS) and a drift pin (Type-B) was 0.79; and that a rupture occurred in the wood plate due to high stiffness of the drift pin. The maximum moment ratio of the specimen using a glass fiber reinforced wood plate (Type-3-PS) and a glass fiber reinforced wooden laminated pin (Type-C) was 0.67, which showed low performance. However, unlike Type-A, a ductile fracture occurred on Type-C, and the load gradually decreased even after the maximum moment.

물-시멘트비에 따른 하이브리드 섬유보강 고인성 시멘트 복합체의 역학적 특성 (W/C Ratio Effects on Mechanical Properties of High Performance hybrid SC and PE Fibers Reinforced Cement Composites)

  • 윤현도;김선우;전에스더;이상수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 춘계학술발표회 논문집(I)
    • /
    • pp.118-121
    • /
    • 2006
  • The research reported here is concerned with the effects of the fiber combination condition and water/cement ratio on the mechanical properties of high performance fiber-reinforced cementitious composites(HPFRCC). An experimental investigation of the behavior of steel cords(SC) and SC and Polyethylene(PE) hybrid fiber reinforced cementitious material under compressive and tensile loading is presented. In this experimental research, the tensile and compressive strength and strain capacity of HPFRCC were selected using the cylindrical specimens. The results show that W/C ratio is a significant effect factor on the compressive and tensile performance of HPFRCC. The envelope curve concept applies to hybrid fiber-reinforced cementitious composites in tension just as it does to compressive stress-strain curve of fiber-reinforced cement composites. For practical purposes, the tensile envelope curve may be taken to be the same as the monotonic tensile stress-strain curve.

  • PDF

Incremental Damage Mechanics of Particle or Short-Fiber Reinforced Composites Including Cracking Damage

  • Cho, Young-Tae
    • Journal of Mechanical Science and Technology
    • /
    • 제16권2호
    • /
    • pp.192-202
    • /
    • 2002
  • In particle or short-fiber reinforced composites, cracking of the reinforcements is a significant damage mode because the cracked reinforcements lose load carrying capacity. This paper deals with an incremental damage theory of particle or short-fiber reinforced composites. The composite undergoing damage process contains intact and broken reinforcements in a matrix. To describe the load carrying capacity of cracked reinforcement, the average stress of cracked ellipsoidal inhomogeneity in an infinite body as proposed in the previous paper is introduced. An incremental constitutive relation on particle or short-fiber reinforced composites including progressive cracking of the reinforcements is developed based on Eshelby's (1957) equivalent inclusion method and Mori and Tanaka\`s (1973) mean field concept. Influence of the cracking damage on the stress-strain response of composites is demonstrated.