DOI QR코드

DOI QR Code

Effect of strain level on strength evaluation of date palm fiber-reinforced sand

  • Received : 2019.02.12
  • Accepted : 2020.04.01
  • Published : 2020.05.25

Abstract

Conventional researches on the behavior of fiber-reinforced and unreinforced soils often investigated the failure point. In this study, a concept is proposed in the comparison of the fiber-reinforced with unreinforced sand, by estimating the strength and strength ratio at different levels of strain. A comprehensive program of laboratory drained triaxial compression test was performed on compacted sand specimens, with and without date palm fiber. The fiber inclusion used in triaxial test specimens was form 0.25%-1.0% of the sand dry weight. The effect of the fiber inclusion and confining pressure at 0.5%, 1.0%, 1.5%, 3.0%, 6.0%, 9.0%, 12%, and 15% of the imposed strain levels on the specimen were considered and described. The results showed that, the trend and magnitude of the strength ratio is different for various strain levels. It also implies that, using failure strength from peak point or the strength corresponding to the axial strain of approximately 15% for evaluating the enhancement of strength or strength ratio, due to the reinforcement, may cause hazard and uncertainty in practical design. Therefore, it is necessary to consider the strength of fiber-reinforced specimen at the imposed strain level, compared to the unreinforced specimen.

Keywords

References

  1. Al-Refeai. T.O. (1991), "Behavior of granular soils reinforced with discrete randomly oriented inclusions", Geotext. Geomembranes, 10(4), 319-333. https://doi.org/10.1016/0266-1144(91)90009-L.
  2. Azadegan, O., Kaffash E.A., Yaghoubi, M.J. and Pourebrahim, G.R. (2012), "Laboratory study on the swelling, cracking and mechanical characteristics of the palm fibre reinforced clay", Elect. J. Geotech. Eng., 17(A), 47-54.
  3. Canakci, H., Gullu, H. and Alhashemy, A. (2019), "Performances of using geopolymers made with various stabilizers for deep mixing", Materials, 12(16), 2542, 1-32. https://doi.org/10.3390/ma12162542.
  4. Canakci, H., Gullu, H. and Dwle, M.I.K. (2018), "Effect of glass powder added grout for deep mixing of marginal sand with clay", Arab. J. Sci. Eng., 43(4), 1583-1595. https://doi.org/10.1007/s13369-017-2655-3.
  5. Claria, J.J. and Vettorelo, P.P. (2016), "Mechanical behavior of loose sand reinforced with synthetic fibers", Soil Mech. Found. Eng., 53(1), 12-18. https://doi.org/10.1007/s11204-016-9357-9.
  6. Consoli, N.C., Casagrande, M.D.T. and Coop, M.R. (2005), "Effect of fibre-reinforced on the isotropic compression behavior of a sand", J. Geotech. Geoenviron. Eng., 131(11), 1434-1436. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:11(1434).
  7. Consoli, N.C., Casagrande, M.D.T., Prietto, P.D.M. and Thome, A. (2003), "Plate load test on fiber-reinforced soil", J. Geotech. Geoenviron. Eng., 129(10), 951-955. https://doi.org/10.1061/(ASCE)1090-0241(2003)129:10(951).
  8. Consoli, N.C., Casagrande, M.D.T., Thome, A., Rosa, F.D. and Fahey, M. (2009), "Effect of relative density on plate loading tests on fibre-reinforced sand", Geotechnique, 59(5), 471-476. https://doi.org/10.1680/geot.2007.00063.
  9. Consoli, N.C., Godoy, V.B., Rosenbach, C.M.C. and Peccin da Silva, A. (2019), "Effect of sodium chloride and fibre-reinforcement on the durability of sand-coal fly ash-lime mixes subjected to freeze-thaw cycles", Geotech. Geol. Eng., 37(1), 107-120. https://doi.org/10.1007/s10706-018-0594-8.
  10. Consoli, N.C., Heineck, K.S., Casagrande, M.D.T. and Coop, M. R. (2007), "Shear strength behavior of fiber-reinforced sand considering triaxial tests under distinct stress path", J. Geotech. Geoenviron. Eng., 133(11), 1466-1669. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:11(1466).
  11. Consoli, N.C., Prietto P.D.M. and Ulbrich, L.A. (1998), "Influence of fiber and cement addition on behavior of sand soil", J. Geotech. Geoenviron. Eng., 124(12), 1211-1214. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:12(1211).
  12. Diambra, A., Russell, A.R., Ibriam, E. and Muir Wood, D. (2007), "Determination of fibre orientation distribution in reinforced sands", Geotechnique, 57(7), 623-628. https://doi.org/10.1680/geot.2007.57.7.623.
  13. Gray, D.H. and Ohashi, H. (1983), "Mechanics of fibre reinforcement in sand", J. Geotech. Eng., 109(3), 335-353. https://doi.org/10.1061/(ASCE)0733-9410(1983)109:3(335).
  14. Gullu, H. (2013), "On the prediction of shear wave velocity at local site of strong ground motion stations an application using artificial intelligence", Bull. Earthq. Eng., 11(4), 969-997. https://doi.org/10.1007/s10518-013-9425-8.
  15. Gullu, H. (2014a), "Function finding via genetic expression programming for strength and elastic properties of clay treated with bottom ash", Eng. Appl. Artif. Intell., 35(10), 143-157. https://doi.org/10.1016/j.engappai.2014.06.020.
  16. Gullu, H. (2014b), "A factorial experimental approach for effective dosage rate of stabilizer: An application for fine-grained soil treated with bottom ash", Soils Found., 54(3), 462-477. https://doi.org/10.1016/j.sandf.2014.04.017.
  17. Gullu, H. (2015), "Unconfined compressive strength and freeze-thaw resistance of fine-grained soil stabilised with bottom ash, lime and super plasticizer", Road Mater. Pavement Des., 16(3), 608-634. https://doi.org/10.1080/14680629.2015.1021369.
  18. Gullu, H. (2016), "Comparison of rheological models for jet grout cement mixtures with various stabilizers", Construct. Build. Mater., 127(11), 220-236. https://doi.org/10.1016/j.conbuildmat.2016.09.129.
  19. Gullu, H. (2017a), "A new prediction method to rheological behavior of grout with bottom ash for jet grouting columns", Soils Found., 57(3), 384-396. https://doi.org/10.1016/j.sandf.2017.05.006.
  20. Gullu, H. (2017b), "A novel approach to prediction of rheological characteristics of jet grout cement mixtures via genetic expression programming", Neural Comput. Appl., 28(Supp1), 407-420. https://doi.org/10.1007/s00521-016-2360-2.
  21. Gullu, H. and Fedakar, H.I. (2017a), "Unconfined compressive strength and freeze-thaw resistance of sand modified with sludge ash and polypropylene fiber", Geomech. Eng., 13(1), 25-41. https://doi.org/10.12989/gae.2017.13.1.025.
  22. Gullu, H. and Fedakar, H.I. (2017b), "Response surface methodology for optimization of stabilizer dosage rates of marginal sand stabilized with Sludge Ash and fiber based on UCS performances", KSCE J. Civ. Eng., 21(5), 1717-1727. https://doi.org/10.1007/s12205-016-0724-x.
  23. Gullu, H. and Fedakar, H.I. (2017c), "On the prediction of unconfined compressive strength of silty soil stabilized with bottom ash, jute and steel fibers via artificial intelligence", Geomech. Eng., 12(3), 441-464. https://doi.org/10.12989/gae.2017.12.3.441.
  24. Gullu, H. and Fedakar, H.I. (2018), "Use of factorial experimental approach and effect size on the CBR testing results for the usable dosages of wastewater sludge ash with coarse-grained material", Eur. J. Environ. Civ. Eng., 22(1), 42-63. https://doi.org/10.1080/19648189.2016.1179678.
  25. Gullu, H. and Girisken, S. (2013), "Performance of fine-grained soil treated with industrial wastewater sludge", Environ. Earth Sci., 70(2), 777-788. https://doi.org/10.1007/s12665-012-2167-0.
  26. Gullu, H. and Khudir, A. (2014), "Effect of freeze-thaw cycles on unconfined compressive strength of fine-grained soil treated with jute fiber, steel fiber and lime", Cold Reg. Sci. Technol., 106-107, 55-65. https://doi.org/10.1016/j.coldregions.2014.06.008.
  27. Gullu, H. and Pala, M. (2014), "On the resonance effect by dynamic soil structure interaction a revelation study", Nat. Hazards, 72(2), 827-847. https://doi.org/10.1007/s11069-014-1039-1.
  28. Gullu, H., Ansal, M.A. and Ozbay A. (2008), "Seismic hazard studies for Gaziantep city in South Anatolia of Turkey", Nat. Hazards, 44(1), 19-50. https://doi.org/10.1007/s11069-007-9140-3.
  29. Gullu, H., Canakci, H. and Al Zangana, I.F. (2017), "Use of cement based grout with glass powder for deep mixing", Construct. Build. Mater., 137(4), 12-20. https://doi.org/10.1016/j.conbuildmat.2017.01.070.
  30. Gullu, H., Cevik, A., Al-Ezzi, K.M. and Gulsan, M.E. (2019), "On the rheology of using geopolymer for grouting: A comparative study with cement-based grout included fly ash and cold bonded fly ash", Construct. Build. Mater., 196(1), 594-610. https://doi.org/10.1016/j.conbuildmat.2018.11.1.
  31. Hejazi, S.M., Sheikhzadeh, M., Abtahi. S.M. and Zadhoush, A. (2012), "A simple review of soil reinforcement by using natural and synthetic fibers", Construct. Build. Mater., 30(4), 100-116. https://doi.org/10.1016/j.conbuildmat.2011.11.045.
  32. Ladd, R.S. (1978), "Preparing test specimens using under compaction", Geotech. Test. J., 1(1), 16-23. https://doi.org/10.1520/GTJ10364J.
  33. Long, Y., Chen, J. and Zhang, J. (2017), "Introduction and analysis of a strain-softening damage model for soil-structure interfaces considering shear thickness", KSCE J. Civ. Eng., 21(7), 2634-2640. https://doi.org/10.1007/s12205-017-0476-2.
  34. Michalowski, R.L. and Cermak, J. (2002), "Strength anisotropy of fiber reinforced sand", Comput. Geotech., 29(4), 279-299. https://doi.org/10.1680/jgeot.17.P.102.
  35. Michalowski, R.L. and Cermak, J. (2003), "Triaxial compression of sand reinforced with fibers", J. Geotech. Geoenviron. Eng., 129(2), 15-136. https://doi.org/10.1061/(ASCE)1090-0241(2003)129:2(125).
  36. Michalowski, R.L. and Zhao, A. (1996), "Failure of fiber-reinforced granular soils", J. Geotech. Eng., 122(3), 226-234. https://doi.org/10.1061/(ASCE)0733-9410(1996)122:3(226).
  37. Mirzababaei, M., Arulrajah, A., Haque, S., Nimbalkar, S.S. and Mohajerani, A. (2018), "Effect of fiber reinforcement on shear strength and void ratio of soft clay", Geosynth. Int., 25(4), 471-480. https://doi.org/10.1680/jgein.18.00023.
  38. Ranjan, G., Vasan, R.M. and Charan, H.D. (1996), "Probabilistic analysis of randomly distributed fiber reinforced soil", J. Geotech. Eng., 122(6), 419-426. https://doi.org/10.1061/(ASCE)0733-9410(1996)122:6(419).
  39. Shukla. S.K. (2017), Fundamentals of Fibre-Reinforced Soil Engineering, Springer Nature, Singapore.
  40. Tang, C.S., Wang, D.Y., Cui, Y.J., Shi, B. and Li, J. (2016), "Tensile strength of fiber-reinforced soil", J. Mater. Civ. Eng., 28(7), 1-13. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001546.
  41. Zarandi, M., Ghazanafri, M.A. and Selajegheh, F. (2012), "Measurement of some chemical and physical-mechanical and thermal characteristics of date palm fibers in order to preparation of composites", Proceedings of the National Conference of Iranian Date, Kerman, Iran.