• 제목/요약/키워드: Fiber stress

검색결과 1,333건 처리시간 0.03초

Experimental study on fatigue crack propagation of fiber metal laminates

  • Xie, Zonghong;Peng, Fei;Zhao, Tianjiao
    • Steel and Composite Structures
    • /
    • 제17권2호
    • /
    • pp.145-157
    • /
    • 2014
  • This study aimed to investigate the fatigue crack growth behavior of a kind of fiber metal laminates (FML) under four different stress levels. The FML specimen consists of three 2024-T3 aluminum alloy sheets and two layers of glass/epoxy composite lamina. Tensile-tensile cyclic fatigue tests were conducted on centrally notched specimen at four stress levels with various maximum values. A digital camera system was used to take photos of the propagating cracks on both sides of the specimens. Image processing software was adopted to accurately measure the length of the cracks on each photo. The test results show that: (1) a-N and da/dN-a curves of FML specimens can be divided into transient crack growth segment, steady state crack growth segment and accelerated crack growth segment; (2) compared to 2024-T3 aluminum alloy, the fatigue properties of FML are much better; (3) da/dN-${\Delta}K$ curves of FML specimens can be divided into fatigue crack growth rate decrease segment and fatigue crack growth rate increase segment; (3) the maximum stress level has a large influence on a-N, da/dN-a and da/dN-${\Delta}K$ curves of FML specimens; (4) the fatigue crack growth rate da/dN presents a nonlinear accelerated increasing trend to the maximum stress level; (5) the maximum stress level has an almost linear relationship with the stress intensity factor ${\Delta}K$.

섬유/입자 혼합금속복합재료의 인장거동 (Tensile Behavior of Fiber/Particle Hybrid Metal Matrix Composites)

  • 정성욱;정창규;한경섭
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2002년도 추계학술발표대회 논문집
    • /
    • pp.139-142
    • /
    • 2002
  • This study presents a mathematical model predicting the stress-strain behavior of fiber reinforced (FMMCs) and fiber/particle reinforced metal matrix composites (F/P MMCs). MMCs were fabricated by squeeze casting method using Al2O3 short fiber and particle as reinforcement, and A356 aluminum alloy as matrix. The fiber/particle ratios of F/P MMCs were 2:1, 1:1, 1:2 with the total reinforcement volume fraction of 20 vol.%, and the FMMCs were reinforced with 10 vol,%, 15 vol. %, 20 vol. % of fibers. Tensile tests were conducted and compared with predictions which were derived using laminate analogy theory and multi-failure model of reinforcements. Results show that the tensile strength of FMMCs with 10 vol.% of fiber was well matched with prediction, and as the fiber volume increases, predictions become larger than experimental results. The difference between the prediction and experiment is considered to be a result of matrix allowance of fiber damage in tensile loading. As the fiber volume fraction in FMMCs increases, the fiber damage increases and so that the tensile strength is reduced. The strength of F/P MMCs approaches more closely to the prediction than FMMCs reinforced with 20 vol.% of fibers because F/P MMCs contains small quantity of fibers and thus has a positive effect in fiber strengthening.

  • PDF

고변형속도 조건에서 섬유 혼합비가 하이브리드 섬유보강 시멘트복합체의 인장특성에 미치는 영향 (Fiber blending Ratio Effect on Tensile Properties of Hybrid Fiber Reinforced Cement-based Composites under High Strain Rate)

  • 손민재;김규용;이보경;이상규;김경태;남정수
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2017년도 추계 학술논문 발표대회
    • /
    • pp.147-148
    • /
    • 2017
  • In this study, the tensile properties of mono and hybrid fiber reinforced cement-based composite according to fiber blending ratio under the high strain rate was evaluated. Experimental results, the HSF1.5PVA0.5 shown the highest tensile strength because the PVA fiber suppressed the micro cracks in the matrix around the hooked steel fiber and improved the pull-out resistance of hooked steel fiber. Thus, DIF of strain capacity and fracture toughness of HSF1.5PVA were greatly improved. Also, the fracture toughness was greatly improved because the tensile stress was slowly decreased after the peak stress by improvement of the pull-out resistance of hooked steel fiber at strain rate 101/s.

  • PDF

TiNi/Al 6061 형상기억복합재료의 기계적특성에 관한 실험 및 해석적 평가 (The Evaluation of Mechanical Properties of TiNi/Al 6061 Shape Memory Composites by Using Experimental and Finite Element Analysis)

  • 박동성;박영철;이동화;이규창
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.687-691
    • /
    • 2001
  • Al alloy matrix composite with TiNi shape memory fiber as reinforcement has been fabricated by hot pressing to investigate mechanical properties. The stress-strain behavior of the composites was evaluated at temperatures between 363K and room temperature as a function of pre-strain by using experimental and finite element analysis, and both cases showed that the tensile stress at 363K was higher than that of the room temperature. Especially, the tensile stress of this composite increases with increasing the amount of pre-strain, and it also depends on the volume fraction of fiber and heat treatment. The smartness of the composite is given due to the shape memory effect of the TiNi fiber which generates compressive residual stress in the matrix material when heated after being pre-strained.

  • PDF

Evaluation of Inhomogeneous Deformation and Stress Concentration In Polymer Composites Injection Weld by means of Thermoelastic Techniques

  • Lim, Jae-Kyoo;Kim, Yon-Jig
    • Journal of Mechanical Science and Technology
    • /
    • 제15권12호
    • /
    • pp.1616-1622
    • /
    • 2001
  • Fiber composite materials are widely used in aerospace industries due to their high specific strength and stiffness. Especially, the increasing use of polymer composite materials for injection of automobile components has led to a considerable interest in the application of stress pattern analysis by thermal emission to these composite materials. Therefore, in this study the microstructure of glass fiber orientation at the parent and weld line of polycarbonate is observed by a light transmission. And we also investigate a stress concentration model of a notch including short glass fibers. Especially the polymer injection weld reorients the fiber to suggest a new method for the evaluation of inhomogeneous deformation.

  • PDF

Analytical Algorithm Predicting Compressive Stress-Strain Relationship for Concrete Confined with Laminated Carbon Fiber Sheets

  • Lee, Sang-Ho;Kim, Hyo-Jin
    • Computational Structural Engineering : An International Journal
    • /
    • 제1권1호
    • /
    • pp.39-48
    • /
    • 2001
  • An analytical compressive stress-strain relationship model for circular and rectangular concrete specimens confined with laminated carbon fiber sheets (CFS) is studied. Tsai-Hill and Tsai-Wu failure criteria were used to implement orthotropic behavior of laminated composite materials. By using these criteria, an algorithm which analyzes the confinement effect of CFS on concrete was developed. The proposed analytical model was verified through the comparison with experimental data. Various parameters such as concrete strength, ply angle, laminate thickness, section shape, and ply stacking sequences were investigated. Numerical results by the proposed model effectively simulate the experimental compressive stress-strain behavior of CFS confined concrete specimens. Also, the pro-posed model estimates the compressive strength of the specimen to a high degree of accuracy.

  • PDF

Numerical simulation of elastic-plastic stress concentration in fibrous composites

  • Polatov, Askhad M.
    • Coupled systems mechanics
    • /
    • 제2권3호
    • /
    • pp.271-288
    • /
    • 2013
  • In the present study an elastic-plastic strain analysis is carried out for fibrous composites by using numerical modeling. Application of homogeneous transversely-isotropic model was chosen based on problem solution of a square plate with a circular hole under uniaxial tension. The results obtained in this study correspond to the solution of fiber model trial problem, as well as to analytical solution. Further, numerical algorithm and software has been developed, based on simplified theory of small elastic strains for transversely-isotropic bodies, and FEM. The influence of holes and cracks on stress state of complicated configuration transversely-isotropic bodies has been studied. Strain curves and plasticity zones that are formed in vicinity of the concentrators has been provided. Numerical values of effective mechanical parameters calculated for unidirectional composites at different ratios of fiber volume content and matrix. Content volume proportions of fibers and matrix defined for fibrous composite material that enables to behave as elastic-plastic body or as a brittle material. The influences of the fibrous structure on stress concentration in vicinity of holes on boron/aluminum D16, used as an example.

취성기지 복합재료에서 연성 단섬유의 함유량 및 형상에 관한 보강특성 (Reinforcing Characteristics on Volume and Shape of Ductile Short-Fiber in Brittle Matrix Composites)

  • 신익재;이동주
    • 대한기계학회논문집A
    • /
    • 제24권1호
    • /
    • pp.250-258
    • /
    • 2000
  • The reinforcing effects of ductile short-fiber reinforced brittle matrix composites are studied by, measuring flexural strength, fracture toughness and impact energy as functions of fiber volume fraction and length. The parameters of fracture mechanics, K and J are applied to assess fracture toughness and bridging stress. It is found that fracture toughness is greatly, influenced by the bridging stress ill which fiber pull-out is occur. For the reinforcing effects as functions of fiber volume fraction($V_f$ = 1, 2, 3 %) and length(L = 3, 6. 10cm), the flexural strength is maximum at $V_f$ = 1% and both fracture toughness.

형상기억합금을 이용한 지능형 고분자 복합재료의 설계 (Design of an Intelligent Polymer-Matrix-Composite Using Shape Memory Alloy)

  • 정태헌
    • 대한기계학회논문집A
    • /
    • 제21권10호
    • /
    • pp.1609-1618
    • /
    • 1997
  • Thermo-mechanical behaviors of polymer matrix composite(PMC) with continuous TiNi fiber are studied using theoretical analysis with 1-D analytical model and numerical analysis with 2-D multi-fiber finite element(FE) model. It is found that both compressive stress in matrix and tensile stress in TiNi fiber are the source of strengthening mechanisms and thermo-mechanical coupling. Thermal expansion of continuous TiNi fiber reinforced PMC has been compared with various mechanical behaviors as a function of fiber volume fraction, degree of pre-strain and modulus ratio between TiNi fiber and polymer matrix. Based on the concept of so-called shape memory composite(SMC) with a permanent shape memory effect, the critical modulus ratio is determined to obtain a smart composite with no or minimum thermal deformation. The critical modulus ratio should be a major factor for design and manufacturing of SMC.

Modeling of fiber pullout behaviors of stiff fiber reinforced cementitious composites

  • Chang, Xu;Chen, Ya-Juan;Lin, Hai-Xiao;Zhang, Yong-Bin
    • Computers and Concrete
    • /
    • 제9권3호
    • /
    • pp.171-178
    • /
    • 2012
  • This paper presents numerical studies of stiff fiber pullout behaviors of fiber reinforced cementitious composites based on a progressive damage model. The ongoing debonding process is simulated. Interfacial stress distribution for different load levels is analyzed. A parametric study, including bond strength and the homogeneity index on the pullout behaviors is carried out. The numerical results indicate that the bond stress decreases gradually from loaded end to embedded end along fiber-cement interface. The debonding initially starts from loaded end and propagates to embedded end as load increasing. The embedded length and bond strength affect the load-loaded end displacement curves significantly. The numerical results have a general agreement with the experimental investigation.