• 제목/요약/키워드: Fiber stress

검색결과 1,326건 처리시간 0.031초

Mechanical Properties and Modeling of Amorphous Metallic Fiber-Reinforced Concrete in Compression

  • Dinh, Ngoc-Hieu;Choi, Kyoung-Kyu;Kim, Hee-Seung
    • International Journal of Concrete Structures and Materials
    • /
    • 제10권2호
    • /
    • pp.221-236
    • /
    • 2016
  • The aim of this paper is to investigate the compressive behavior and characteristics of amorphous metallic fiber-reinforced concrete (AMFRC). Compressive tests were carried out for two primary parameters: fiber volume fractions ($V_f$) of 0, 0.3, 0.6 and 0.8 %; and design compressive strengths of 27, 35, and 50 MPa at the age of 28 days. Test results indicated that the addition of amorphous metallic fibers in concrete mixture enhances the toughness, strain corresponding to peak stress, and Poisson's ratio at high stress level, while the compressive strength at the 28-th day is less affected and the modulus of elasticity is reduced. Based on the experimental results, prediction equations were proposed for the modulus of elasticity and strain at peak stress as functions of fiber volume fraction and concrete compressive strength. In addition, an analytical model representing the entire stress-strain relationship of AMFRC in compression was proposed and validated with test results for each concrete mix. The comparison showed that the proposed modeling approach can properly simulate the entire stress-strain relationship of AMFRC as well as the primary mechanical properties in compression including the modulus of elasticity and strain at peak stress.

1축 및 2축 압축을 받는 고강도콘크리트 및 강섬유보강 고강도콘크리트의 거동 (Behavior of Plain and Steel Fiber Reinforced High Strengh Concrete Under Uniaxial and Biaxial Compression)

  • 임동환;박성환
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 추계 학술발표회 제17권2호
    • /
    • pp.5-8
    • /
    • 2005
  • The purpose of this study is to investigate the mechanical characteristics of plain and steel fiber high strength concrete under uniaxial and biaxial loading condition. A number of plain and steel fiber high strength concrete cubes having 28 days compressive strength of 82.7Mpa (12,000psi) were made and tested. Four principal compression stress ratios, and four fiber concentrations were selected as major test variables. From test results, it is shown that confinement stress in minor stress direction has pronounced effect on the strength and deformational behavior. Both of the stiffness and ultimate strength of the plain and fiber high strength concrete increased. The maximum increase of ultimate strength occurred at biaxial stress ratio of 0.5 in the plain high strength concrete and the value were recorded 30 percent over than the strength under uniaxial condition. The failure modes of plain high strength concrete under uniaxial compression were shown as splitting type of failure but steel fiber concrete specimens under biaxial condition showed shear type failure.

  • PDF

단방향 연속 섬유 복합재 횡단면에서 섬유 배열에 따른 응력 분포 변화 (Effects of Fiber Arrangements on Stress Distributions over the Transverse Cross Section of Unidirectionally Continuous Fiber-reinforced Composites)

  • 최수훈;지우석
    • Composites Research
    • /
    • 제33권1호
    • /
    • pp.30-37
    • /
    • 2020
  • 단방향 연속 섬유 강화 복합소재에 대하여 섬유 배열에 따른 응력 분포 양상을 연구하기 위해 단면 형상을 대표하는 체적 요소를 생성하였다. 대표 체적 요소에 횡방향 하중을 가하였을 때, 섬유와 기지재 강성의 차이로 인해 섬유 둘레에서 응력 집중 현상이 발생하며, 섬유 간 좁은 간격 때문에 집중된 응력이 중첩되며 섬유 주변에서 높은 응력이 구해질 것이라 쉽게 예측할 수 있다. 본 연구에서는 섬유 둘레 응력 증감이 단순히 섬유 간 간격 뿐 아니라 섬유의 상대적 위치가 하중 방향과 이루는 각도에 의해서도 결정됨을 보여준다. 정규 육각 구조를 가지는 대표 체적 요소의 중앙에 위치한 섬유를 다양한 방향으로 이동시키며 횡방향 하중을 가하여, 섬유 주변 응력이 증가하거나 감소하는 양상을 유한요소해석 기법을 이용해 측정하였다. 섬유 간 거리가 최소이면서 두 섬유의 중심을 잇는 선분의 방향이 하중 방향과 일치할 때 응력이 최대로 증가하였으며, 섬유 간 거리가 최소라 하더라도 하중 방향에 수직일 때 최대 응력은 오히려 감소한다는 것을 보여준다.

RC보의 부착보강공법과 외부강선보강공법의 유효응력에 관한 연구 (A Study on the Effective Stress of RC Beams in Applying the Adhesion Reinforced and the External Post-Tensioning Method)

  • 박용걸;최정열;최준혁
    • 한국철도학회논문집
    • /
    • 제10권2호
    • /
    • pp.186-194
    • /
    • 2007
  • This study was performed to compare the load-carrying capacities of the reinforced concrete structure between the carbon fiber adhesion reinforcement method and the external post-tensioning method and further estimate the effective stress of the reinforced material by analyzing the experimental reinforcing effect of each method and the behavior resulting from each method. As a result, it was found out that the effective stress of the carbon fiber reinforcement according to the carbon fiber adhesion reinforcement method had an unexpected value, and also, bearing of the stress was found to be far from sharing thereof. That is to say, while the carbon fiber was bearing the whole stress to some limits, it got to be momentarily ruptured as soon as it went beyond such limits. On the other hand, the external post-tensioning method has the advantage of inducing an initial effective stress by introducing a strain, and thus, it was found that behavior or bearing of the stress was also found to be a solid behavior of the steel wire. This method was also found to be more efficient and excellent than the carbon fiber adhesion reinforcement method in the reinforcing effect or securing the effective stress. Accordingly, we were to discuss the effective stress as comparatively examined, focusing on deriving of the more enhanced reinforcing effect on the basis of the experiment to which the field characteristic is added.

단섬유 복합체에서 탄성계수비가 내부응력에 미치는 영향 (Effects of Elastic Modulus Ratio on Internal Stresses in Short Fiber Composites)

  • 김홍건;노홍길
    • 한국공작기계학회논문집
    • /
    • 제13권4호
    • /
    • pp.73-78
    • /
    • 2004
  • The conventional SLT(Shear Lag Theory) which has been proven that it can not provide sufficiently accurate strengthening predictions in elastic regime when the fiber aspect ratio is small. This paper is an extented work to improve it by modifying the load transfer mechanism called NSLT(New Shear Lag Theory), which takes into account the stress transfer across the fiber ends and the SCF(Stress Concentration Factor) that exists in the matrix regions near the fiber ends. The key point of the model development is to determine the major controlling factor among the material and geometrical coefficients. It is found that the most affecting factor is the fiber/matrix elastic modulus ratio. It is also found that the proposed model gives a good result that has the capability to correctly predict the elastic properties such as interfacial shear stresses and local stress variations in the small fiber aspect ratio regime.

단섬유 복합강화 메커니즘에 관한 이론적 연구 (Theoretical Study on the Strengthening Mechanism in Short Fiber Composites)

  • 김홍건;최창용;노홍길
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2003년도 추계학술대회
    • /
    • pp.295-300
    • /
    • 2003
  • In discontinuous composite mechanics, shear lag theory is one of the most popular model because of its simplicity and accuracy. However, it does not provide sufficiently accurate strengthening predictions in elastic regime when the fiber aspect ratio is small. This is due to its neglect of stress transfer across the fiber ends and the stress concentrations that exist in the matrix regions near the fiber ends. To overcome this shortcoming, a more simplified shear lag model introducing the stress concentration factor which is a major function of modulus ratio is proposed. It is found that the proposed model gives a good agreement with finite element results and has the capability to correctly predict the values of intefacial shear stresses and local stress variations in the small fiber aspect ratio regime.

  • PDF

Improved Modeling of the Effects of Thermal Residual Stresses on Single Fiber Pull-Out Problem

  • Chai, Young-Suk;Park, Byung-Sun;Yang, Kyung-Jun
    • Journal of Mechanical Science and Technology
    • /
    • 제15권7호
    • /
    • pp.823-830
    • /
    • 2001
  • The single fiber pull-out technique has been commonly used to characterize the mechanical behavior of fiber/matrix interface in fiber reinforced composite materials. In this study, an improved analysis considering the effect of thermal residual stresses in both radial and axial directions is developed for the single fiber pull-out test. It is found to have the pronounced effects on the stress transfer properties across the interface and the interfacial debonding behavior.

  • PDF

Beet pulp as soluble fiber source and dietary energy levels for growing pigs under heat stress

  • Yo Han Choi;Ye Jin Min;Da Yeon Jeon;Hyun Ju Jin;Yong Dae Jeong;Hyun Ju Park;Abdolreza Hosseindoust;Sang Hun Ha;Jun Young Mun;Jin Soo Kim;Jo Eun Kim
    • Journal of Animal Science and Technology
    • /
    • 제65권5호
    • /
    • pp.989-1001
    • /
    • 2023
  • The study evaluated the effects of dietary fiber and energy levels administered during two growing periods (d 0-28 and d 29-56) for pigs exposed to a high temperature. A total of 96 growing pigs were used in six treatments as: Two treatments in thermoneutral temperature (21℃-24℃) with dietary energy of 3,300 and the inclusion of high or low fiber, two treatments in heat stress (30℃-34℃) with dietary energy of 3,300 and the inclusion of high or low fiber, and two treatments in heat stress with dietary energy of 3,450 and the inclusion of high or low fiber. Among standard energy level treatments, heat-stressed pigs showed lower average daily gain (ADG), feed intake, digestibility of dry matter, gross energy, crude protein, and crude fiber in phases 1 and 2. Moreover, higher concentrations of acetate, propionate, butyrate, and total short-chain fatty acid (SCFA) in feces were shown in pigs fed high fiber diets. There was a negative interaction between dietary fiber and energy for the fecal concentration of isobutyrate in phase 1 and valerate in phase 2. Pigs in heat stress treatments showed a higher rectal temperature, respiratory rate, hair cortisol, plasma zonulin, and fecal lipocalin-2. Among heat stress treatments, the overall ADG was increased in pigs fed high fiber. Pigs fed high dietary fiber showed a greater concentration of acetate, propionate, butyrate, and total SCFA. High fiber treatments decreased plasma zonulin. In conclusion, the inclusion of beet pulp, soluble fiber, at the level of 4% looks necessary in pigs diet during heat stress.

Response of lap splice of reinforcing bars confined by FRP wrapping: application to nonlinear analysis of RC column

  • Pimanmas, Amorn;Thai, Dam Xuan
    • Structural Engineering and Mechanics
    • /
    • 제37권1호
    • /
    • pp.111-129
    • /
    • 2011
  • This paper presents a nonlinear analysis of reinforced concrete column with lap splice confined by FRP wrapping in the critical hinging zone. The steel stress-slip model derived from the tri-uniform bond stress model presented in the companion paper is included in the nonlinear frame analysis to simulate the response of reinforced concrete columns subjected to cyclic displacement reversals. The nonlinear modeling is based on a fiber discretization of an RC column section. Each fiber is modeled as either nonlinear concrete or steel spring, whose load-deformation characteristics are calculated from the section of fiber and material properties. The steel spring that models the reinforcing bars consists of three sub-springs, i.e., steel bar sub-spring, lap splice spring, and anchorage bond-slip spring connected in series from top to bottom. By combining the steel stress versus slip of the lap splice, the stress-deformation of steel bar and the steel stress-slip of bars anchored into the footing, the nonlinear steel spring model is derived. The analytical responses are found to be close to experimental ones. The analysis without lap splice springs included may result in an erroneous overestimation in the strength and ductility of columns.

Tension and impact behaviors of new type fiber reinforced concrete

  • Deng, Zongcai;Li, Jianhui
    • Computers and Concrete
    • /
    • 제4권1호
    • /
    • pp.19-32
    • /
    • 2007
  • This paper is concentrated on the behaviors of five different types of fiber reinforced concrete (FRC) in uniaxial tension and flexural impact. The complete stress-strain responses in tension were acquired through a systematic experimental program. It was found that the tensile peak strains of concrete with micro polyethylene (PEF) fiber are about 18-31% higher than that of matrix concrete, those for composite with macro polypropylene fiber is 40-83% higher than that of steel fiber reinforced concrete (SFRC). The fracture energy of composites with micro-fiber is 23-67% higher than that of matrix concrete; this for macro polypropylene fiber and steel fiber FRCs are about 150-210% and 270-320% larger than that of plain concrete respectively. Micro-fiber is more effective than macro-fiber for initial crack impact resistance; however, the failure impact resistance of macro-fiber is significantly larger than that of microfiber, especially macro-polypropylene-fiber.