• 제목/요약/키워드: Fiber strengthening

검색결과 561건 처리시간 0.022초

Numerical study on the rotation capacity of CFRP strengthened cold formed steel beams

  • Serror, Mohammed H.;Soliman, Essam G.;Hassan, Ahmed F.
    • Steel and Composite Structures
    • /
    • 제23권4호
    • /
    • pp.385-397
    • /
    • 2017
  • Currently, CFRP (Carbon Fiber Reinforced Polymer) plate bonding is used quite extensively as a strengthening method. In this technique, a composite CFRP plate or sheet of relatively small thickness is bonded with an adhesion material to steel or concrete structure in order to improve its structural behavior and strength. The sheets or plates do not require much space and give a composite action between the adherents. In this study, the rotation capacity of CFRP-strengthened cold-formed steel (CFS) beams has been evaluated through numerical investigation. Studies on different structural levels have been performed. At the beam level, C-section has been adopted with different values of profile thickness, web height, and flange width. At the connection level, a web bolted moment resistant type of connection using through plate has been adopted. In web-bolted connections without CFRP strengthening, premature web buckling results in early loss of strength. Hence, CFRP sheets and plates with different mechanical properties and geometric configurations have been examined to delay web and flange buckling and to produce relatively high moment strength and rotation capacity. The numerical results reveal that CFRP strengthening may increase strength, initial stiffness, and rotation capacity when compared with the case without strengthening.

Aramid섬유시트를 사용한 철근콘크리트보의 보수.보강 (Flexural Behavior of Reinforced Concrete Beams Strengthened with Aramid Fiber-Reinforced Sheet)

  • 김진수;박재만
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 봄 학술발표회 논문집(I)
    • /
    • pp.840-845
    • /
    • 1999
  • In this study, it was experimentally investigated the effectiveness of repair and strengthening methods for RC beams deteriorated under severs enviromental conditions. Polymer cement were employed to restore the sectional loss and aramid fiber-reinforced sheet was used to reinforce the surface subject to tension. Repaired and strengthened reinforced-concrete samples were subjected to loading tests. The tests revealed that the sectional restoration enhanced the loading capability of the sample structures. Additional strengthening with one aramid fiber-reinforced sheet improved 18% of yielding load and 30% of ultimate load of the structure. Reinforcing with two aramid fiber-reinforced sheets brought about an enhancement of 22% of yielding loading and 49% of ultimate load.

  • PDF

탄소섬유시트로 보강된 R/C 보의 최대내력에 관한 연구 (A Study on the Maximum Load of R/C Beams Strengthened by Carbon Fiber Sheets)

  • 최창식;김용채
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제5권2호
    • /
    • pp.199-204
    • /
    • 2001
  • Recently, strengthening of structural members by adhesion of steel plate or fiber sheets is generally used. Particularly, the Carbon Fiber Sheets (CFS) is widely used. Rut, the strengthening effect of the CFS is not clearly define yet. Therefore, this paper is designed to evaluate the effectiveness of CFS methods by analyzing previous studies in statistics. According to the results, the maximum load carrying capacity is increased up to 0.16 times when the reinforced concrete beams were strengthened by CFS which is standard specimens. The number of sheets made some effect on the strength while, the other parameters influenced the ductile capacity.

  • PDF

구조적 손상을 입은 철근콘크리트 보의 전단보강 효과에 관한 연구 (A Study on the Shear Strengthening Effect of Reinforced Concrete Beams with Structural Damage)

  • 신용석;김정훈;김정섭;김광석;조철희
    • 한국건축시공학회지
    • /
    • 제8권5호
    • /
    • pp.43-51
    • /
    • 2008
  • This study examines shear capacity performance and structural characteristics of reinforced concrete beam using carbon fiber sheet(CFS), g)ass fiber sheet(GFS), glass fiber steel plate(GSP) and carbon fiber bar CB) which are reinforcing materials for reinforced concrete beam in order to produce similar condition to repair and reinforce actual structure and aims to provide data available In designing and constructing reinforced concrete structures under the structural damage. This study obtains the following conclusions. After considering the shear experiment results. it was indicated that the CB reinforced test object was the best in the shear capacity improvement and ductility capacity as it was contained in the concrete and was all operated, Also, GFS reinforced test object indicated the reduced flexural capacity but good shear capacity. GSP reinforced test object had bigger reinforcing strength than other reinforcing test objects. On the other hand, it showed the lowest reinforcement effect as compared section thickness of reinforced material because it showed the bigger relativity a section thickness of reinforced material. If the adherence to the concrete is improved, it will seem to show bigger reinforcement effect.

탄소섬유 메쉬를 사용한 철근콘크리트 보의 휨보강 (Flexural Strengthening of Reinforced Concrete Beams Using Carbon Fiber Mesh)

  • 서수연;윤현도;최창식;최기봉
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제9권2호
    • /
    • pp.181-190
    • /
    • 2005
  • 본 연구에서는 탄소섬유메쉬(Carbon Fiber Mesh, CFM)를 이용한 철근콘크리트 보의 휨보강 효과를 연구하며 CFM의 정착과 겹침이음방법에 따른 영향을 연구하고자 한다. 휨이 지배적인 5개의 철근 콘크리트 실험체를 제작하고 CFM으로 보강한 후 단순지지형태로 가력을 하여 그 보강효과를 규명하고자 한다. 보의 전체 길이는 2400mm이며 깊이와 폭이 모두 300mm로서 휨이 지배될 수 있도록 실험체를 계획하였다. 실험으로부터, 균열이 시작되는 단계에서 CFM의 보강효과는 미약한 것으로 나타났으나, 균열발생 이후에는 보의 휨강성확보의 측면에서 효과가 있는 것으로 나타났다. 보강된 실험체와 보강되지 않은 실험체의 비교를 통하여 CFM보강효과를 확인할 수 있었으며, 균열발생시와 항복시에 대하여 보강효과를 반영하여 예측한 계산값과 실험결과가 좋은 일치를 보이는 것으로 나타났다.

하중이력을 받은 콘크리트 압축공시체의 탄소섬유쉬트 보강효과에 관한 실험적 연구 (An Experimental Study on the Strengthening Effect of CFS on Concrete Cylinder under Load History)

  • 배주성;김경수;김재욱;고영표
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제4권3호
    • /
    • pp.169-176
    • /
    • 2000
  • In the strengthening of the existed reinforced concrete(RC) structures, it is required that the more rational strengthening method and the amounts of strengthening materials would be decided under the consideration of the present state of RC structures. Therefore, this study examined the strengthening effects of concrete cylinders strengthened with carbon fiber sheet(CFS). In this studying we modeled the reduction of internal forces and the initial strains of concrete cylinders as the load history over the elastic limit. From the results, it revealed that the strengthening of two layer CFS was more effective on the concrete cylinders under the action of load history such as cyclic and cracking load.

  • PDF

Sprayed FRP 공법에 의한 콘크리트 구조물의 보수.보강법 개발에 관한 연구 - 철근콘크리트 보의 보강성능 평가 - (Repair and Strengthening Methods for Concrete Structures using Sprayed Fiber Reinforced Polymers - Strengthening Performance of Reinforced Concrete Beams -)

  • 이강석;손영선;변인희;이문성;나정민;이리형
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 추계 학술발표회 논문집
    • /
    • pp.133-136
    • /
    • 2006
  • The main purpose of this study is to develop a Sprayed FRP repair and strengthening method, which is a new technique for strengthening the existing concrete structures by mixing carbon or glass shot fibers and the epoxy or vinyl ester resins with high-speed compressed air in open air and randomly spraying the mixture onto the concrete surface. At present, the Sprayed FRP repair and strengthening method using the epoxy resin has not been fully discussed. In this study, a series of experiments are carried out to evaluate the strengthening effects of the flexural and shear concret beams strengthened with the Sprayed FRP method. The results revealed that the strengthening effects of the flexural and shear specimens are similar, compared to those of the FRP sheet.

  • PDF

유리섬유-강판 복합재료(GSP)로 보강된 RC 보의 전단거동에 관한 실험적 연구 (Experimental Investigation of the Shear Behavior of RC Beams Strengthened with Glass Fiber-Steel Composite Plate(GSP))

  • 장준환;김성도;조백순;정진환
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제11권1호
    • /
    • pp.130-140
    • /
    • 2007
  • 섬유시트보강 및 강판보강은 RC 구조물에 주로 사용되었으나, 이들은 조기부착파괴나 자중의 과다 등의 단점을 가지고 있어 현실적으로 적용사례가 대폭 줄어들고 있는 실정이다. 본 연구에서는 전단강도 증가를 위해 GSP(Glass fiber-Steel composite Plate)로 전단보강된 RC 보의 실험한 결과를 제시한다. GSP는 높은 강도의 유리섬유시트를 조기탈락하지 않도록 앵커링할 수 있으며, 정착시 섬유시트의 손상을 방지할 수 있도록 얇은 강판을 섬유시트 사이에 둔 보강재료이다. 기준 실험보 3개와 GSP로 전단보강된 보 60개로 전단실험을 수행하였다. 본 연구는 GSP로 전단보강된 RC보의 전단 보강효과를 평가하며, 이 실험결과 GSP로 전단보강된 RC보의 전단강도는 기준실험보에 비하여 현저히 증가하였음을 확인하였다.

강판 및 탄소섬유 sheet로 보강된 R/C 보의 피로거동에 관한 연구 (Study on the Fatigue Behaviors of R/C Beam Strengthened with Steel Plate and Carbon Fiber Sheet)

  • 심종성;홍영균;최완철;황의숭;이차돈;배인환;박성재
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1995년도 봄 학술발표회 논문집
    • /
    • pp.319-324
    • /
    • 1995
  • Strengthening a damaged structure by bonding steel plate on the surface of cracked structural members have been widely accepted for strengthening the structural components Recently, however, caron fiber sheets have been developed in order to achive more effective way of strengthening damaged structures due to their superior material properties to those of conventionally used steel plates in terms of their lighter unit weight and higher tensile strength. It has been reported that when both methods are applied to a damaged beam element, flexural strength and its stiffness of a beam increase and the rate of crack development as well as crack width and edflection under service loads are reduced, In this study some experiments are performed in order to comparetively observe the structural properties of the damaged beams which are either strengthened with different lengths of steel plates or with carbon sheets on the crack propagation, failure mechanisms, and load-deflection charateristics under the fatigue loadings.

  • PDF

구조물 보강용 탄소섬유쉬트의 부착특성에 관한 연구 (A Study on the Bond Properties of Carbon Fiber Sheets used for Strengthening Structures)

  • 황진석;김지영;백명종;박형철;박칠림
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1997년도 가을 학술발표회 논문집
    • /
    • pp.653-658
    • /
    • 1997
  • Recently, carbon Fiber sheet (CFS) is frequently used for strengthening deteriorated concrete structures. To strengthening damaged structures, the property and characteristic of the bond between CFS and the concrete surface must be understood. The tensile test of single lap shear specimen was performed to study bond strength, bond stress distribution and stress transfer between CFS and concrete surface according to the bond length. Based on the test results, there were ultimate influence length (UIL) in which bond stress was distributed, and ultimate strain reduction ratio (USRR) by which strain was reduced linearly. Bond resisting force (BRF) was estimated by UIL and USRR, and which was compared with ultimate loads. According to the results of comparison, it was shown that ultimate bond strength could be estimated reasonablely by BRF.

  • PDF