• Title/Summary/Keyword: Fiber sample

Search Result 554, Processing Time 0.022 seconds

Opticsal Characteristics of Bismuth-doped Aluminosilicate Glass Codoped with Li and Ge (Bi 첨가 알루미노실리케이트 유리에서 Li 및 Ge 공첨가가 광 특성에 미치는 영향)

  • Seo, Young-Seok
    • Korean Journal of Optics and Photonics
    • /
    • v.18 no.3
    • /
    • pp.221-225
    • /
    • 2007
  • The possibility of improving amplification characteristics and lowering the melting point of bismuth-doped aluminosilicate glass as a new amplification material, which has broadband near-infrared emission at 1300 nm regions, was investigated. Spectroscopic analysis of bismuth-doped aluminosilicate glass shows that the addition of an alkali metal oxide, $Li_{2}O$ increases FWHM of fluorescence spectrum but decreases fluorescence intensity, while $GeO_{2}$ composition increases both FWHM of fluorescence spectrum and fluorescence intensity. Also, excellent optical amplification gain characteristics in a $GeO_{2}$-added sample were observed.

Quantification of Naproxen in Pharmaceutical Formulation using Near-Infrared Spectrometry (근적외 분광분석법을 이용한 나프록센 정제의 정량분석)

  • Kim Do Hyung;Woo Young Ah;Kim Hyo Jin
    • YAKHAK HOEJI
    • /
    • v.49 no.1
    • /
    • pp.1-5
    • /
    • 2005
  • Near-infrared (NIR) spectroscopy has been widely applied in various field, since it is nondestructive and no sample preparation is required. In this paper, NIR spectroscopy was used for the determination of naproxen in a commercial pharmaceutical preparation. NIR spectroscopy was used to determine the content of naproxen in intact naproxen tablets containing 250 mg ($65.8\%$ nominal concentration) by collecting NIR spectra in the range of $1100{\sim}1750nm$. The laboratory-made samples had $46.1{\sim}85.5\%$ nominal naproxen concentration. The measurements were made by reflection using a fiber-optic probe and calibration was carried out by partial least square regression (PLSR). Model validation was performed by randomly splitting the data set into calibration and validation data set (63 samples as a calibration data set and 42 samples as a validation data set). The developed NIR calibration gave results comparable to the known values of tablets in a laboratorial manufacturing process with standard error of calibration (SEC) and standard error of prediction (SEP) of $1.06\%\;and\;1.04\%$, respectively. The NIR method showed good accuracy and repeatability. NIR spectroscopic determination in intact tablets allowed the potential use of real time monitoring for a running production process.

Comparative Analysis of Dynamic Moisture Movement Testers

  • Lee, Duck-Weon;Shim, Woo-Sub;Lim, Ho-Sun
    • Journal of Fashion Business
    • /
    • v.15 no.6
    • /
    • pp.40-55
    • /
    • 2011
  • The purpose of this research is to review testing principle, testing design and experimental results of the four dynamic moisture movement testers. The research analyzes Moisture Manager Tester (MMT), Alambeta Instrument, Dynamic Surface Moisture Movement Tester, and Gravimetric Absorbent Testing Method based on American Society for Testing and Material (ASTM) E 96 which is an international standard testing method. Although many of researches use ASTM E 96 to measure moisture movement on a fabric, it has several weaknesses, such as long experimental time and a physical change of sample by a holder of the frame. Hence, lots of researchers have studied and developed the new measurement systems measuring moisture management on a fabric or garment and ultimately mimic heat energy and perspiration created by the human body. These moisture management systems use a variety of parameters, such as electricity, color, and sensor to measure their movement in the fabric. Through comparison with the existing tester (ASTM E 96), the research recognizes the strength and weakness in the dynamic moisture movement testers.

Use of Calcium Carbonate for Improving Solid Content of KOCC Wet Web (탄산칼슘 적용에 의한 KOCC 지필의 고형분 증대)

  • Hwang, In-Young;Ji, Sung-Gil;Seo, Yung-Bum
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.45 no.6
    • /
    • pp.1-9
    • /
    • 2013
  • For the manufacture of linerboard with 100% KOCC, we tried to increase the solid content of wet web by employing GCC (grounded calcium carbonate) in the fiber furnish to save drying energy. Three different diameters of GCC, namely, 5, 10, and $35{\mu}m$, were used. To complement the strength loss by the addition of GCC, cationic starch and refining treatment were tried. It was found that the addition of $10-35{\mu}m$ dia. GCC to KOCC for $180g/m^2$ basis weight sheets increased the solid content of the furnish about 1-1.5% with better bulk and drainage properties. The loss of strength properties were compensated by the application of cationic starch and/or refining process to the KOCC furnish. The dia. of GCC of $35{\mu}m$ was, however, too large to make smooth surface of the sample sheet. So, the optimization process was required before implementing the results to the mill by selecting proper diameter and shape of the calcium carbonate.

Fast Fourier Transform Analysis of Welding Penetration Depth Using 2 kW CW Nd:YAG Laser Welding Machine

  • Kim, Do-Hyung;Chung, Chin-Man;Baik, Sung-Hoon;Kim, Koung-Suk;Kim, Jin-Tae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.4
    • /
    • pp.372-376
    • /
    • 2008
  • We report experimental results on the correlations between welding penetration depth and the frequencies of the radiation from the welding pool. Various welding samples such as SUS304, brass, SUS316, etc. have been investigated with 2 kW CW Nd:YAG laser welding machine. The radiation signals from the plume generated by the interactions between the welding sample and laser with respect to the defocusing length was measured with fiber system collecting the plume signal. Analysis of the frequencies by using fast Fourier transform (FFT) shows that the penetration depth is deep as plume signal frequencies are low, shallow penetration depth for high frequencies. Frequencies up to 250 Hz for obtained signals can be analyzed with the discrete FFT. This is the useful method fur closed loop control of the laser power with respect to the welding penetration depth and is used for real time inspection of the welding quality.

Free vibration of actual aircraft and spacecraft hexagonal honeycomb sandwich panels: A practical detailed FE approach

  • Benjeddou, Ayech;Guerich, Mohamed
    • Advances in aircraft and spacecraft science
    • /
    • v.6 no.2
    • /
    • pp.169-187
    • /
    • 2019
  • This work presents a practical detailed finite element (FE) approach for the three-dimensional (3D) free-vibration analysis of actual aircraft and spacecraft-type lightweight and thin honeycomb sandwich panels. It consists of calling successively in $MATLAB^{(R)}$, via a developed user-friendly GUI, a detailed 3D meshing tool, a macrocommands language translator and a commercial FE solver($ABAQUS^{(R)}$ or $ANSYS^{(R)}$). In contrary to the common practice of meshing finely the faces and core cells, the proposed meshing tool represents each wall of the actual hexagonal core cells as a single two-dimensional (2D) 4 nodes quadrangularshell element or two 3 nodes triangular ones, while the faces meshes are obtained simply using the nodes at the core-faces interfaces. Moreover, as the same 2D FE interpolation type is used for meshing the core and faces, this leads to an automatic handling of their required FE compatibility relations. This proposed approach is applied to a sample made of very thin glass fiber reinforced polymer woven composite faces and a thin aluminum alloy hexagonal honeycomb core. The unknown or incomplete geometric and materials properties are first collected through direct measurements, reverse engineering techniques and experimental-FE modal analysis-based inverse identification. Then, the free-vibrations of the actual honeycomb sandwich panel are analyzed experimentally under different boundary conditions and numerically using different mesh basic cell shapes. It is found that this approach is accurate for the first few modes used for pre-design purpose.

Mechanical and Thermal Properties of Industrial Protective Fabric with Recycled m-Aramid and Natural Fiber

  • Sung, Eun Ji;Baek, Young Mee;An, Seung Kook
    • Textile Coloration and Finishing
    • /
    • v.30 no.4
    • /
    • pp.227-236
    • /
    • 2018
  • As consciousness of safety becomes an important social issue, the demand for protective clothing is increasing. Conventional flame-retardant cotton working wear has low durability, and working wear with m-aramid fibers are stiff, heavy, less permeable, and expensive. In this study, recycled m-aramid and cotton have been blended to produce woven fabric of different compositions to enhance high performance and comfort to solve aforementioned problems. The fabrics were analyzed according to constituents and various structural factors. Mechanical properties were measured using KES-FB system. The measured thermal properties are TGA, $Q_{max}$, TPP and RPP. Fabric with polyurethane yarn covered by m-aramid/cotton spun yarn is observed to have good wearability. The fabric of open end spun yarn showed more stiffness than that of ring spun yarn. The sample with the high count of yarn has more smooth surface. In addition, high m-aramid content fabric is considered to have relatively high stiffness when using as clothing. In TGA the fabric with higher m-aramid content showed more stable decomposition behavior. The fabric having rough surface showed lower heat transfer properties in $Q_{max}$. The influence of the fabric thickness was important in convection and radiant heat test.

A Study on the Adsorption Kinetics of 133Cs by Different Impregnations of Prussian Blue (프러시안 블루 고정화에 따른 133Cs의 흡착거동 모델링)

  • Choi, S.S.;Lee, Y.J.;Yun, K.J.;Cho, Y.J.;Lee, J.H.;Lee, S.H.
    • Journal of the Korean Society of Safety
    • /
    • v.36 no.1
    • /
    • pp.80-85
    • /
    • 2021
  • Radionuclides, particularly radioactive cesium (Cs), are a concern of human health in some nuclear power accidents. It could lead to a high level of intracellular accumulation due to its high radioactivity and long half-life. Therefore, it is imperative to develop a method to remove Cs from wastewater. Herein, we synthesized activated carbon fibers (ACFs) doped with Prussian blue (PB) via in situ methods. We classified samples by their preparation method as either physical (PB-ACF-A) or physicochemical (PB-ACF-B) syntheses for comparison. The PB-ACF-B sample showed a significant surface loss compared to PB-ACF-A but a better 133Cs adsorption capacity. All samples fit well to Langmuir isotherms and the values of qmax were directly correlated to the amount of PB on the surface of the ACFs. Adsorption characteristics were further confirmed by the calculated free energy, enthalpy, and entropy.

Different strengthening designs and material properties on bending behavior of externally reinforced concrete slab

  • Najafi, Saeed;Borzoo, Shahin
    • Structural Monitoring and Maintenance
    • /
    • v.9 no.3
    • /
    • pp.271-287
    • /
    • 2022
  • This study investigates the bending behavior of a composite concrete slab roof with different methods of externally strengthing using steel plates and carbon fiber reinforced polymer (CFRP) strips. First, the concrete slab model which was reinforced with CFRP strips on the bottom surface of it is validated using experimental data, and then, using numerical modeling, 7 different models of square-shaped composite slab roofs are developed in ABAQUS software using the finite element modeling. Developed models include steel rebar reinforced concrete slab with variable thickness of CFRP and steel plates. Considering the control sample which has no external reinforcement, a set of 8 different reinforcement states has been investigated. Each of these 8 states is examined with 6 different uncertainties in terms of the properties of the materials in the construction of concrete slabs, which make 48 numerical models. In all models loading process is continued until complete failure occurs. The results from numerical investigations showed using the steel plates as an executive method for strengthening, the bending capacity of reinforced concrete slabs is increased in the ultimate bearing capacity of the slab by about 1.69 to 2.48 times. Also using CFRP strips, the increases in ultimate bearing capacity of the slab were about 1.61 to 2.36 times in different models with different material uncertainties.

Algorithm for Discrimination of Brown Rice Kernels Using Machine Vision

  • C.S. Hwang;Noh, S.H.;Lee, J.W.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1996.06c
    • /
    • pp.823-833
    • /
    • 1996
  • An ultimate purpose of this study is to develop an automatic brown rice quality inspection system using image processing technique. In this study emphasis was put on developing an algorithm for discriminating the brown rice kernels depending on their external quality with a color image processing system equipped with an adaptor for magnifying the input image and optical fiber for oblique illumination. Primarily , geometrical and optical features of sample images were analyzed with unhulled paddy and various brown rice kernel samples such as sound, cracked, green-transparent , green-opaque, colored, white-opaque and brokens. Secondary, an algorithm for discrimination of the rice kernels in static state was developed on the basis of the geometrical and optical parameters screened by a statistical analysis(STEPWISE and DISCRIM Procedure, SAS ver.6). Brown rice samples could be discriminated by the algorithm developed in this study with an accuracy of 90% to 96% for the sound , cracked, colored, broken and unhulled , about 81% for the green-transparent and the white-opaque and about 75% for the green-opaque, respectively. A total computing time required for classification was about 100 seconds/1000 kernels with the PC 80486-DX2, 66MHz.

  • PDF