• Title/Summary/Keyword: Fiber reinforcement

Search Result 1,095, Processing Time 0.022 seconds

An Experimental Study on the Compressive Strength Characteristics of Reinforced Concrete Columns Strengthened with Fiber Sheets (섬유시트로 보강된 철근콘크리트 기둥의 압축강도 특성에 관한 실험적 연구)

  • Kim, Jeong-Sup;Choi, Jin-Seok;Cho, Cheol-Hee;Go, Song-Kyoon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.3 no.2
    • /
    • pp.119-127
    • /
    • 2003
  • Test specimen test was performed using concrete reinforced with fiber sheet and the test variables were based on the kinds of fiber and the number of reinforcement layers. Using steel-concrete reinforced with fiber sheet, compression tests were performed and the test variables were the kinds of fiber, number reinforcement layers and reinforcement layer order. The following results were obtained: 1) It was demonstrated that compressive strength of the test specimen reinforced during test specimen test and member test increased as the number of reinforcement layers increased. 2) It was shown that non-reinforced test, specimen were destroyed during the member tests, but the specimen reinforced with CFS destroyed and the GFS-reinforced specimen and composite reinforced specimen showed ductile destruction. 3) As a result of tests on kinds of reinforcement fiber, it was demonstrated that CFS-reinforced test specimen had higher compressive strength in a 공시체 test. In the member test, 2ply-and 3ply-GFS reinforced specimens except lplied one had higher compressive strength. It was because partial destruction occurred due to the rate of height/section. 4) For layer strength order, compared with test specimen reinforced only with a single reinforced material, test specimen reinforced with CFS and GFS, and test specimen reinforced with CFS first showed better results in compressive strength and ductility judgement.

Flexural Reinforcement of RC Structures with composite fiber rods inserted in high strength special purposed polymer mortar for various deteriorated conditions. (박막형 고강도 폴리머 및 열화원인별 적용 몰탈내에 섬유로드를 삽입하는 RC 구조물의 보강공법 연구)

  • 정원용;이상근;박홍진
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.828-835
    • /
    • 2000
  • In recent years, RC structures need reinforcement due to physical and chemical deterioration, reduction of serviceability and structural capacity. For reinforcement of RC structures, steel plate attachment, area increase and composite fiber sheet attachment methods are used, but there are some problems like weight increase, workability, quality control and fire resistance capacity. This study presents the effectiveness of flexural reinforcement of RC beams using composite rods that are inserted in high strength special purposed polymer mortar.

  • PDF

Mechanical Properties of Steel Fiber Reinforced Polymer Concrete (강섬유 보강 폴리머 콘크리트의 역학적 특성)

  • 김기락;연규석;이윤수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10a
    • /
    • pp.336-341
    • /
    • 1998
  • Steel fiber reinforced concrete(SFRC) is a composite material possessing many physical and mechanical properties which are distinct from unreinforced concrete. The use of steel fiber reinforcement to improve the flexural and tensile strengths, extensibility and toughness of ordinary cement concrete is well known at present, but reinforcement of polymer concrete with steel fibers has been hardly reported untill now. The objective of this study was to improve the properties of the polymer concrete by addition of steel fibers. In this paper steel fiber reinforced polymer concrete is prepared with various steel fiber contents and aspect ratio($\ell$ /d), and their mechanical properties were investigated experimentally.

  • PDF

RCC frames with ferrocement and fiber reinforced concrete infill panels under reverse cyclic loading

  • Ganesan, N.;Indira, P.V.;Irshad, P.
    • Advances in concrete construction
    • /
    • v.5 no.3
    • /
    • pp.257-270
    • /
    • 2017
  • An experimental investigation was carried out to study the strength and behavior of reinforced cement concrete (RCC) frames with ferrocement and fiber reinforced concrete infill panel. Seven numbers of $1/4^{th}$ scaled down model of one bay-three storey frames were tested under reverse cyclic loading. Ferrocement infilled frames and fiber reinforced concrete infilled frames with varying volume fraction of reinforcement in infill panels viz; 0.20%, 0.30%, and 0.40% were tested and compared with the bare frame. The experimental results indicate that the strength, stiffness and energy dissipation capacity of infilled frames were considerably improved when compared with the bare frame. In the case of infilled frames with equal volume fraction of reinforcement in infill panels, the strength and stiffness of frames with fiber reinforced concrete infill panels were slightly higher than those with ferrocement infill panels. Increase in volume fraction of reinforcement in the infill panels exhibited only marginal improvement in the strength and behavior of the infilled frames.

An Experimental Study on Flexural and Shear Strength of Reinforced Concrete Beam Using Reinforcing Materials (보강재를 사용한 철근콘크리트 보의 휨·전단내력에 관한 실험적연구)

  • Hong, Sang-Kyun;Eun, Hee-Chang;Park, Ki-Choul;Chung, Heon-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.1 no.1
    • /
    • pp.65-73
    • /
    • 1997
  • In this paper, It is the effect of using fiber sheet (Carbon Fiber Sheet & Aramid Fiber Sheet) and Steel Plate for reinforced concrete beam. 25 specimens are tested, 16 specimens are for bending capacity and the other are for shear capacity. In the case of bending testing, the kind and quantity of the reinforcement materials, the bondage and the existence of crack were selected as experimental variables. In the case of shear testing, It is testified the effect of reinforcement with the variables of the method of reinforcement (side type and U type). As a result, Using the reinforcing materials can increase the capacity of bending and shear stress.

  • PDF

Effect of Fiber Blending on Material Property of Hybrid Fiber Reinforced Concrete (섬유 혼입 비율에 따른 하이브리드 섬유보강 콘크리트의 재료특성)

  • Kim, Hag-Youn;Seo, Ki-Won;Lee, Wok-Jae;Kim, Nam-Ho;Park, Choon-Gun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.345-348
    • /
    • 2004
  • In this study, an effect of fiber blending on material property of hybrid fiber reinforced concrete (HFRC) was evaluated. Also, optimized association and the mixing rate of fiber for HFRC was determined. Test result shows, in the case of mono fiber reinforced concrete, use of steel fiber in concrete caused increment in tensile and bending strength as the blended ratio increases, while use of carbon fiber and glass fiber caused increment in compressive strength. Use of hybrid fiber reinforcement in concrete caused a significant influence on its fracture behavior; consequently, caused increase by mixing rate of steel fiber and contributed by carbon fiber, glass fiber, celluloid fiber in reinforcement effect in order.

  • PDF

Effects of Steel Fiber Concrete (鋼纖維에 의한 콘크리트의 補强效果)

  • Koh, Chae-Koon;Kim, Moon-Ki;Rhee, Shin-Ho
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.27 no.2
    • /
    • pp.47-56
    • /
    • 1985
  • Wasting fiberous residues from the cutting processes of steel materials at an iron-Works were mixed with concrete. The strength and toughness of steel fiber concrete with different steel contents were tested in a laboratory. The test results showed that the steel fiber residues can be used for the reinforcement of concrete. The potential applications of such product include floor constructions for facilities like dairy barns, grain storages, and machinery shops. The test results are as follows. 1. The compressive strengths of steel fiber concrete with one percent steel content by volume were 20 percent greater than that of plain concrete. The treatments also increased the concrete toughness by 96 percent. 2. When applied to tensile forces, the steel fiber concrete showed the increased strengths by 20 percent, and the toughness by 48 percent. 3. The steel content levels greater than or equal to 1.5 percent by volume resulted in the decreases of the compressive and tensile strengths of steel fiber concrete by 10 percent as compared to plain concrete. The concrete toughness increased with the steel contents. 4. The reinforcement effects of steel fiber depend on the quality of fiber material being used. Good steel fiber for concrete reinforcement appears to be uniform in shape and component, fine and long, and round-shaped.

  • PDF

Fiber reinforced concrete L-beams under combined loading

  • Ibraheem, Omer Farouk;Abu Bakar, B.H.;Johari, I.
    • Computers and Concrete
    • /
    • v.14 no.1
    • /
    • pp.1-18
    • /
    • 2014
  • The addition of steel fibers in concrete mixture is recognized as a non-conventional mass reinforcement scheme that improves the torsional, flexural, and shear behavior of structural members. However, the analysis of fiber reinforced concrete beams under combined torsion, bending, and shear is limited because of the complicated nature of the problem. Therefore, nonlinear 3D finite element analysis was conducted using the "ANSYS CivilFEM" program to investigate the behavior of fiber reinforced concrete L-beams. These beams were tested at different reinforcement schemes and loading conditions. The reinforcement case parameters were set as follows: reinforced with longitudinal reinforcement only and reinforced with steel bars and stirrups. All beams were tested under two different combined loading conditions, namely, torsion-to-shear ratio (T/V) = 545 mm (high eccentricity) and T/V = 145 mm (low eccentricity). Eight intermediate L-beams were constructed and tested in a laboratory under combined torsion, bending, and shear to validate the finite element model. Comparisons with the experimental data reveal that the program can accurately predict the behavior of L-beams under different reinforcement cases and combined loading ratios. The ANSYS model accurately predicted the loads and deformations for various types of reinforcements in L-beams and captured the concrete strains of these beams.

Development of a Composite Fiber Reinforcement Pavement using Eco-Friendly Grid and Dispersive Fibers (친환경 쉬트형 보강재 및 분산성 섬유를 적용한 복합 섬유 보강 포장 개발)

  • Park, Ju Won;Kim, Hyeong Su;Kim, Hyeok Jung;Kim, Sung Bo
    • International Journal of Highway Engineering
    • /
    • v.19 no.6
    • /
    • pp.57-66
    • /
    • 2017
  • PURPOSES : This study develops eco-friendly asphalt reinforcement materials applicable to bridge deck pavement. The main purpose is to ensure highly reliable quality applicable to structures and the possibility of practical application. The main target of the study is to develop materials that are environmentally friendly and capable of improving performance. METHODS : The application of double-reinforcement fiber improves the performance of the road pavement. 1. We use recycled film for application of sheet-typed reinforcement. 2. We use preprocessing fibers to reinforce the properties of composite pavement materials. RESULTS : The developed products may produce materials that fit the purpose of achieving stability and environmental friendliness. Sheet-typed reinforcements use more than 50% recycled resin. The most important type of damage to the asphalt layer is deflection (plastic deformation). These products have a very high deflection resistance of not less than 6,000 cycles/mm. In addition, all performance is excellent. Thus, it will be easier to access the field in the future. CONCLUSIONS : Fiber-reinforced asphalt pavement showed excellent performance. Sheet-typed reinforcements containing 50% recycling resin produced good performance in terms of functionality as well as environmental friendliness. Thus, enhancing the field applicability will enhance the usability of the reinforcements.

Effect of Unidirectional Carbon Fiber Sheet Manufacturing Process Using Coated Glass Fiber and Carbon Fiber on Concrete Reinforcement (유리섬유 코팅사와 탄소섬유를 이용한 일방향 탄소섬유시트 제조공정이 콘크리트 보강에 미치는 영향)

  • Kwon, Jieun;Kwon, Sunmin;Chae, Seehyeon;Jeong, Yedam;Kim, Jongwon
    • Textile Coloration and Finishing
    • /
    • v.34 no.3
    • /
    • pp.185-196
    • /
    • 2022
  • In this study, carbon fiber and coated glass fiber are applied to warp and weft fiber in order to reduce the amount of carbon fiber used in carbon fiber fabrics, which are often used for reinforcement of building structures. A low-cost thermoplastic resin was coated on glass fibers to prepare a shape-stabilizing glass fiber. A unidirectional carbon fiber sheet was manufactured using the prepared coated glass fiber and carbon fiber. In order to identify whether it can be used for reinforcing architectural and civil structures, it was attached to a concrete specimen and its mechanical properties were analyzed. The optimum manufacturing conditions for the coated glass fiber were 0.3 mm in diameter of the coating nozzle, the coating temperature was 190 ℃, and the coating speed was 0.3 m/s. 14 mm was optimal for the weft spacing of the coated glass fiber. The flexural strength of the concrete reinforced with the manufactured unidirectional carbon fiber sheet was slightly lower than that of the concrete reinforced with carbon fiber fabric, but it was confirmed that the reinforcement effect was better when the amount of carbon fiber was considered.