• Title/Summary/Keyword: Fiber reinforced Composites

Search Result 1,361, Processing Time 0.031 seconds

Feasibility Study of a 500-ton Class Patrol Vessel Made of Carbon Fiber Reinforced Polymer (500톤급 탄소섬유 복합소재 경비함 건조가능성 검토)

  • Jang, Jaewon;Lee, Sang-Gyu;Zhang, Haiyang;Maydison, Maydison;Lee, Ju-Hyeong;Oh, Daekyun;Im, Sanghyuk;Kwon, Yongwon;Hwang, Inhyuck;Han, Zhiqiang
    • Composites Research
    • /
    • v.35 no.5
    • /
    • pp.347-358
    • /
    • 2022
  • Carbon fiber is an excellent structural material, which has been proven in many industries, and the shipbuilding industry is no exception. In particular, in advanced maritime countries, special ships of the Navy and Coast Guard with carbon fiber composite hulls have already been deployed. In Korea, carbon fiber composite materials have been applied to a 10-ton class leisure craft or a 30-ton class patrol, but no research has been done on a hundred of tons or more vessels. In this study, the feasibility study of a 500-ton patrol vessel with a carbon fiber composite hull was conducted through an analysis of similar cases abroad. As a result, it was recognized that the developed hull can be reduced in weight by about 21% to 25% compared to the existing aluminum or FRP hull. It was also confirmed that this light-weight effect can induce the improvement of the maximum speed and the improvement of the operating range via simulations.

Nonlinear Biaxial Shear Model for Fiber-Reinforced Cementitious Composite Panels (섬유보강 고인성 시멘트 복합체 패널의 2축 전단 비선형 모델)

  • Cho, Chang-Geun;Kim, Yun-Yong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.6
    • /
    • pp.597-605
    • /
    • 2009
  • The present study has been proposed a model for the in-plane shear behavior of reinforced(Engineered Cementitious Composite(ECC) panels under biaxial stress states. The model newly considers the high-ductile tensile characteristic of cracked ECC by its multiple micro-cracking mechanism, the compressive strain-softening characteristic of cracked ECC, and the shear transfer mechanism in the cracked interface of ECC element. A series of numerical analyses were performed, and the predicted curves were compared with experimental results. The proposed in-plane shear model, R-ECC-MCFT, was found to be well matched with the experimental results, and it was also demonstrated that reinforced ECC panel showed more improved in-plane shear strength and post peak behavior, in comparing with the conventional reinforced concrete panel.

AE Application for Fracture Behavior of SiC Reinforced CFRP Composites (SiC 강화 CFRP 복합재의 파괴거동에 관한 음향방출 적용)

  • Ryu, Yeong Rok;Yun, Yu Seong;Kwon, Oh Heon
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.3
    • /
    • pp.16-21
    • /
    • 2016
  • Carbon Fiber Reinforced Plastic(CFRP) composite with a higher specific strength and rigidity is more excellent than conventional metallic materials or other organic polymer of FRP. It has been widely used in vehicles, aerospaces and high technology industries which are associated with nuclear power fields. However, CFRP laminated composite has several disadvantages as like a delamination, matrix brittleness and anisotropic fibers that are the weak points of the crack initiation. In this present work, the reinforced silicon carbide(SiC) particles were added to the interlayer of CFRP laminates in order to mitigate the physical vulnerability affecting the cracking and breaking of the matrix in the CFRP laminated composite because of excellent specific strength and thermal shock resistance characteristics of SiC. The 1wt% of SiC particles were spread into the CFRP prepreg by using a spray coating method. After that, CFRP prepregs were laminated for the specimen. Also, the twill woven type CFRP prepreg was used because it has excellent workability. Thus the mechanical and fracture behaviors of the twill woven CFRP laminated composite reinforced with SiC particles were investigated with the acoustic emission(AE) method under a fracture test. The results show that the SiC particles enhance the mechanical and fracture characteristics of the twill CFRP laminate composite.

Analysis of the Formation of Porosity and Segregation in $Al_2O_3/Al$ Composites by Squeeze Infiltration Method (가압함침법에 의한 $Al_2O_3/Al$ 복합재료의 기공 및 편석의 발생에 대한 분석연구)

  • Seo, Young-Ho;Lee, Hyoung-Kook
    • Journal of Korea Foundry Society
    • /
    • v.21 no.3
    • /
    • pp.163-178
    • /
    • 2001
  • The squeeze infiltration process is potentially of considerable industrial importance. The performance enhancements resulting from incorporation of short alumina fiber into aluminum are well documented. These are particularly significant for certain automobile components. Aluminum matrix composite automotive parts, such as diesel engine pistons or engine blocks are produced using squeeze casting apparatus or pressure die-casting apparatus. But the solidification process gets complicated with manufacturing parameters and the factors for porosity formation have not fully understood yet. In this study the formation of porosity during squeeze infiltration has been studied experimentally to achieve an improved understanding of the squeeze infiltration process for manufacture of short-fiber-reinforced components, particularly the mechanism of porosity formation. Al-based MMCs produced under a range of conditions were examined metallographically and the porosity characterised;a kind of matrix, an initial temperature of melt, and a volume fraction of reinforcement. The densimetry and the microscopic image analysis were done to measure the amount of porosity. A correlation between manufacturing parameters and defects was investigated through these.

  • PDF

Seismic performance of RC bridge piers subjected to moderate earthquakes

  • Chung, Young Soo;Park, Chang Kyu;Lee, Dae Hyoung
    • Structural Engineering and Mechanics
    • /
    • v.24 no.4
    • /
    • pp.429-446
    • /
    • 2006
  • Experimental investigation was conducted to evaluate the seismic ductility of earthquake-experienced concrete columns with an aspect ratio of 2.5. Eight circular concrete columns with a diameter of 600 mm were constructed with three test parameters: confinement ratio, lap-splice of longitudinal bars, and retrofitting with Fiber Reinforced Polymer (FRP) materials. The objective of this research is to examine the seismic performance of RC bridge piers subjected to a Quasi static test (QST), which were preliminary tested under a series of artificial earthquake motions referred to as a Pseudo dynamic test (PDT). The seismic enhancement effect of FRP wrap was also investigated on these RC bridge piers. Six specimens were loaded to induce probable damage by four series of artificial earthquakes, which were developed to be compatible with earthquakes in the Korean peninsula by the Korea Highway Corporation (KHC). Directly after the PDT, six earthquake-experienced columns were subjected to inelastic cyclic loading under a constant axial load of $0.1{f_c}^{\prime}A_g$. Two other reference specimens without the PDT were also subjected to similar quasi-static loads. Test results showed that specimens pre-damaged by moderate artificial earthquakes generally demonstrated good residual seismic performance, which was similar to the corresponding reference specimen. Moreover, RC bridge specimens retrofitted with wrapping fiber composites in the potential plastic hinge region exhibited enhanced flexural ductility.

Analysis of Folded Plate Structures Composed of [$45^{\circ}$/$-45^{\circ}$/$-45^{\circ}$/$90^{\circ}$/$45^{\circ}$/$45^{\circ}$/$-45^{\circ}$]r Type Laminated Composites Plates ($45^{\circ}$/$-45^{\circ}$/$-45^{\circ}$/$90^{\circ}$/$45^{\circ}$/$45^{\circ}$/$-45^{\circ}$r 복합재료 적층판으로 구성된 사각단면 절판구조물의 구조해석)

  • 김덕현;이정호;홍창우;이남주
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.04a
    • /
    • pp.93-96
    • /
    • 2000
  • The theory of non-prismatic folded plate structures was reported by the senior author in 1965 and 1966. Fiber reinforced composite materials are strong in tension. The structural element for such tension force is very thin and weak against bending because of small bending stiffnesses. Naturally, the box type section is considered as the optimum structural configuration because of its high bending stiffnesses. Such structures can be effectively analyzed by the folded plate theory with relative ease. The "hollow" bending member with uniform cross-section can be treated as prismatic folded plates which is a special case of the non-prismatic folded plates. Tn this paper, the result of analysis of a folded plates with one box type uniform cross-section is presented. Each plate is made of composite laminates with fiber orientation of [ABBCAAB]$_r$, with A=-B=$45^{\circ}$, and C=$90^{\circ}$. The influence of the span to depth ratio is also studied. When this ratio is 5, the difference between the results of folded plate theory and beam theory is 1.66%. is 1.66%.

  • PDF

Three-Dimensional Mold Filling Simulation for Multi-layered Preform in Resin Transfer Molding (다층 예비성형체에 대한 삼차원 충진해석)

  • Yang, Mei;Song, Young-Seok;Youn, Jae-Roun
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.137-140
    • /
    • 2005
  • Resin transfer molding (RTM) is one of the most popular processes for producing fiber reinforced polymer composites. In the manufacture of complex thick composite structures, analysis on flow front advancement on the resin impregnating the multi-layered fiber preform is helpful for the optimization of the process. In this study, three-dimensional mold filling simulation of RTM is carried out by using CVFEM (Control Volume Finite Element Method). On the assumption of isothermal flow of Newtonian fluid, Darcy’s law and continuity equation are used as governing equations. Different permeability tensors employed in each layer are obtained by experiments. Numerically predicted flow front is compared with experimental one in order to validate the numerical results. Flow simulations are conducted in the two mold geometries, rectangular plate and hollow cylinder. Permeability tensor of each layer preform in Cartesian coordinate system is transformed to cylinder coordinates system so that the flow within the multi-layered preforms of the hollow cylinder can be calculated exactly. Our emphasis is on the three dimensional flow analysis for circular three-dimensional braided preform, which shows outstanding mechanical properties such as high impact strength and toughness compared with other conventional two-dimensional laminar-structured preforms.

  • PDF

Flexural analysis of thermally actuated fiber reinforced shape memory polymer composite

  • Tiwari, Nilesh;Shaikh, A.A.
    • Advances in materials Research
    • /
    • v.8 no.4
    • /
    • pp.337-359
    • /
    • 2019
  • Shape Memory Polymer Composites (SMPC) have gained popularity over the last few decades due to its flexible shape memory behaviour over wide range of strains and temperatures. In this paper, non-linear bending analysis has been carried out for SMPC beam under the application of uniformly distributed transverse load (UDL). Simplified C0 continuity Finite Element Method (FEM) based on Higher Order Shear Deformation Theory (HSDT) has been adopted for flexural analysis of SMPC. The numerical solutions are obtained by iterative Newton Raphson method. Material properties of SMPC with Shape Memory Polymer (SMP) as matrix and carbon fibre as reinforcements, have been calculated by theory of volume averaging. Effect of temperature on SMPC has been evaluated for numerous parameters for instance number of layers, aspect ratio, boundary conditions, volume fraction of carbon fiber and laminate stacking orientation. Moreover, deflection profile over unit length and behavior of stresses across thickness are also presented to elaborate the effect of glass transition temperature (Tg). Present study provides detailed explanation on effect of different parameters on the bending of SMPC beam for large strain over a broad span of temperature from 273-373K, which encompasses glass transition region of SMPC.

Mechanical Properties of GMT-Sheet on Press joined Molding (프레스 접합성형 GMT-Sheet의 기계적 성질)

  • Kim, H.;Choi, Y.S.;Lee, C.H;Han, G.Y.;Lee, D.G
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.04a
    • /
    • pp.157-163
    • /
    • 2000
  • The application as the parts of an automobile, using the property of GMT-Sheet, is increasing. In order to exchange the parts of an automobile for GMT-Sheet, at first, the establishment and joining problem of exact joining strength must be determined. We have studied it using composites which is not same each other fiber oriented condition so as to determine joining strength and joining condition of GMT-Sheet. In this study, the result of experiment of forming condition concerned joining problem of GMT-Sheet is this ; joining efficiency of GMT-Sheet, increases as lap joint length L increases. Increase of compression ration cause decrease of joining efficiency after of GMT-Sheet, joining. In the viewpoint of recycling, randomly oriented composite of GMT-Sheet is desirable more than unidirectional oriented composite. We have better design the structure so as not occur to stress centralization on the joining part.

  • PDF

Blade Development and Test of WinDS$3000^{TM}$ System (WinDS$3000^{TM}$ 시스템의 블레이드 개발 및 시험)

  • Lee, Sang-Il;Lee, Kyeong-Woo;Joo, Wan-Don;Lee, Ki-Hak;Park, Jong-Po
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.448-448
    • /
    • 2009
  • A new blade has been developed to apply to Doosan 3MW offshore wind turbine named as WinDS3000TM. The 3MW blade has been designed by the concept of slim external shape and optimized structure. High-performance glass fiber reinforced epoxy composites were used as the main material of the blade. The blade was manufactured using vacuum infusion process in order to increase the fiber volume fraction and to reduce micro-porosities. The blade has successfully passed the full-scale blade static test for certification. During the test, micro-failure signal and strain change of the blade were measured using acoustic emission sensors and strain gages. The blade has robust structure and weighs lighter compared to conventional blade since the new blade was designed by optimization process. The 3MW blade will be commercially applied to WinDS$3000^{TM}$ in 2010.

  • PDF