• Title/Summary/Keyword: Fiber optical sensor

Search Result 727, Processing Time 0.028 seconds

지그비 기반 센서 네트워크를 이용한 침수감지용 광 이중센서 개발 (Development of optical dual-sensors for submersion monitoring using zigbee-based wireless sensor networks)

  • 계광현;김형표;손경락
    • 센서학회지
    • /
    • 제19권3호
    • /
    • pp.184-190
    • /
    • 2010
  • In this paper, a remote submersion warning system based on multi-mode optical fiber(MMF) sensors and a wireless sensor network(WSN) are proposed. To improve the reliability and stability of the sensors, the dual optical fiber sensors combined to the optical coupler are demonstrated. A slave zigbee as a wireless sensor module was used as a platform to monitor and record the signal from the MMF sensors and then transmits these information to a master zigbee wirelessly. The monitoring system running the $LabVIEW^{(R)}$ software was connected to the internet to support the short message service(SMS) through extensible markup language(XML) web service. No matter where the managers are, they can always receive the real-time remote-monitoring data for safety check.

Ultraviolet Light Sensor Based on an Azobenzene-polymer-capped Optical-fiber End

  • Cho, Hee-Taek;Seo, Gyeong-Seo;Lim, Ok-Rak;Shin, Woojin;Jang, Hee-Jin;Ahn, Tae-Jung
    • Current Optics and Photonics
    • /
    • 제2권4호
    • /
    • pp.303-307
    • /
    • 2018
  • We propose a simple ultraviolet (UV) sensor consisting of a conventional single-mode optical fiber capped with an azobenzene-moiety-containing polymer. The UV light changes the dimensions of the azobenzene polymer, as well as the refractive index of the material. Incident light with a wavelength of 1550 nm was reflected at the fiber/polymer and polymer/air interfaces, and interference of the reflected beams resulted in spectral interference that shifted the wavelength by 0.78 nm at a UV input power of $2.5mW/cm^2$. The UV sensor's response to wavelength is nonlinear and stable. The response speed of the sensor is limited by detection noise, which can be improved by modifying the insertion loss of the UV sensor and the signal-to-noise ratio of the detection system. The proposed compact UV sensor is easy to fabricate, is not susceptible to electromagnetic interference, and only reacts to UV light.

A PDMS-Coated Optical Fiber Bragg Grating Sensor for Enhancing Temperature Sensitivity

  • Park, Chang-Sub;Joo, Kyung-Il;Kang, Shin-Won;Kim, Hak-Rin
    • Journal of the Optical Society of Korea
    • /
    • 제15권4호
    • /
    • pp.329-334
    • /
    • 2011
  • We proposed a poly-dimethylsiloxane (PDMS)-coated fiber Bragg grating (FBG) temperature sensor for enhancing temperature sensitivity. By embedding the bare FBG in a temperature-sensitive elastomeric polymer, the temperature sensitivity of the proposed structure could be effectively improved by 4.2 times higher than those of the conventional bare-type FBG sensors due to the high thermal expansion coefficient of the PDMS. We analyzed the temperature-sensitivity enhancement effect with the increased Bragg wavelength shift in our structure and dependence on the temperature sensitivity with respect to the cross-section area of the PDMS.

광섬유센서를 이용한 복합적층판의 변형률 해석 (Strain Analysis of Composite Laminates Using Optical Fiber Sensor)

  • 우성충;최낙삼;박래영;권일범
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2004년도 춘계학술발표대회 논문집
    • /
    • pp.111-114
    • /
    • 2004
  • Using the embedded optical fiber sensor of totally-reflected extrinsic Fabry-Perot interferometer(TR-EFPI), longitudinal strains(Ex) of the core and skin layers in glass fiber reinforced plastic(GFRP) cross-ply composite laminates have been measured. Transmission optical microscopy was employed to study the damage formation around the TR-EFPI sensor. It was observed that values of ex in the interior of the skin layer and the core layer measured by embedded TR-EFPI sensor was significantly higher than that of the specimen surface measured by strain gauges. The experimental results agreed well with those from finite element analysis on the basis of uniform stress model. Large strains in the core layer led to the occurrence of transverse cracks which drastically reduced the strain at failure of optical fiber sensor embedded in the core layer.

  • PDF

Fiber-Optic Temperature Sensor Based on Single Mode Fused Fiber Coupler

  • Kim, Kwang-Taek;Park, Kiu-Ha
    • Journal of the Optical Society of Korea
    • /
    • 제12권3호
    • /
    • pp.152-156
    • /
    • 2008
  • This paper reports a fiber-optic temperature sensor using a single mode fused fiber coupler incorporating a thermo-optic external medium. The spectral transmission was altered by changing the refractive index of the external thermo-optic medium. A theoretical and experimental investigation was carried out with the aim of achieving high sensitivity. The measured sensitivity for the environmental temperature was as high as -1.5 $nm/^{\circ}C$.

광섬유를 이용한 충격 및 압력 센서에 관한 연구 (A Study of the Optical Fiber Sensor for sensing impact and pressure)

  • 양승국;조희제;이석정;전중성;오상기;김인수;오영환
    • 한국정보통신학회논문지
    • /
    • 제7권1호
    • /
    • pp.129-135
    • /
    • 2003
  • 광섬유 센서의 주된 이점으로는 기계적 구동부가 없으므로 고신뢰성, 긴수명, 무전기적 간섭, 고응답속도, 저가이다. 본 연구에서는 공장설비 및 자동문 등과 같은 곳에서 많이 사용되어지는 자동장치의 오작동으로 인한 사고를 미연에 감지하여 인명피해를 줄이기 위하여 광섬유를 이용한 충격 및 압력센서를 제안 및 개발하였다. 센서의 원리로는 충격에 의해 다중모드 광섬유에서 발생하는 스펙클 패턴의 변화를 포토다이오드로 검출하는 방식이다. 광섬유에 충격의 세기를 변화하여 여러 차례 측정한 결과 충격의 세기의 변화에 따른 반응정도는 선형적으로 변하지는 않았으나 주어진 충격에 대해 민감하게 반응하는 것을 실험을 통하여 확인하였으며 광섬유의 피복 두께의 변화나 신호처리부에서의 증폭도를 조절함으로써 충격에 대한 반응감도를 조절할 수 있었다. 광섬유를 이용한 충격 및 압력센서의 장점으로는 점대점 방식이 아닌 라인 방식으로 설치하거나 측정함으로써 광섬유 전체가 센서역할을 하기 때문에 설치가 용이하고 감지범위가 넓어 센서로서의 우수한 특성을 가지므로 다양한 자동시스템 분야나 충격 및 압력센서로 활용될 수 있을 것이다.

광섬유 OTDR 센서에 의한 구조물의 변형률 측정 방법 (Structural Strain Measurement Technique Using a Fiber Optic OTDR Sensor)

  • 권일범;김치엽;유정애
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.388-399
    • /
    • 2003
  • Light losses in optical fibers are investigated by a fiber optic OTDR (Optical Time Domain Reflectometry) sensor system to develop fiber optic probes for structural strain measurement. The sensing fibers are manufactured 3 kinds of fibers: one is single mode fiber, and second is multimode fiber, and the third is low-cladding-index fiber. Fiber bending tests are performed to determine the strain sensitivity according to the strain of gage length of optical fibers. In the result of this experiments, the strain sensitivity of the single mode fiber was shown the highest value than others. The fiber optic strain probe was manufactured to verify the feasibility of the structural strain measurement. In this test, the fiber optic strain probe of the OTDR sensor could be easily made by the single mode fiber.

  • PDF

광섬유 굽힘 손실을 이용한 직물 기반의 광섬유 촉각센서 개발 (Development of fabric-based optical fiber tactile sensor using optical fiber bending loss)

  • 김주영;백상호;이정주
    • 센서학회지
    • /
    • 제18권3호
    • /
    • pp.210-216
    • /
    • 2009
  • In this paper the tactile sensor system based on the bending loss of optical fiber sensor is presented. The sensor array was designed with fabric structure. The optical measuring system was composed of LED for light source and CCD camera for the signal light detector. Performance of this tactile sensor system was evaluated in various environments and compared with Harmon's design criteria. The result shows that load range is 3 g$\sim$100 g, resolution is 1.5 g, hysteresis error is 1.5%. The response linearity is good and flexibility of sensor array is excellent.

Highly Sensitive Optical-fiber Humidity Sensor Based on Nafion-PVA Sol-gel

  • Ning, Wang;Yuhao, Li;Xiaolei, Yin;Wenting, Liu;Shiqi, Liu; Xuwei, Zhao; Yanxi, Zhong;Liang, Xu
    • Current Optics and Photonics
    • /
    • 제7권1호
    • /
    • pp.21-27
    • /
    • 2023
  • A highly sensitive optical-fiber humidity sensor is demonstrated in this paper. By using Nafion-PVA sol-gel and single-mode optical fibers, the Fabry-Perot humidity sensor is easily fabricated. In the humidity range of 29%-72%, humidity-response experiments are carried out with a cycle of rising and falling humidity to investigate humidity-response characteristics. The experimental results show 2.25 nm/%RH sensitivity and a 0.9997 linear correlation coefficient, with good consistency. The changes in optical-path difference (OPD) and free spectral range (FSR) with humidity are also discussed. The humidity sensitivities of a typical sensor are 80.3 nm/%RH (OPD) and 0.03 nm/%RH (FSR). Furthermore, many humidity sensors with different Nafion-PVA sol-gel concentration and initial cavity length are experimentally investigated for humidity response. The results show that the sensitivity increases with higher Nafion ratio of the Nafion-PVA sol-gel. The influence of changing cavity length on sensitivity is not obvious. These results are helpful to research on optical-fiber humidity sensors with good performance, easy fabrication, and low cost.

광섬유격자센서와 회전광학커플러를 사용한 새로운 회전축의 토크 측정방법 (Torque Measurement of Rotating Shaft Using Fiber Bragg Grating Sensors and Rotary Optical Coupler)

  • 이종민;황요하
    • 한국소음진동공학회논문집
    • /
    • 제17권12호
    • /
    • pp.1195-1200
    • /
    • 2007
  • Torque of a rotating shaft has been mostly measured by strain gages combined with either a slip ring or telemetry. However, these methods have severe inherent problems like low S/N ratio, high cost, limited number of channels and difficult installation. In this paper, a new method using FBG(fiber bragg grating) sensors and a rotary optical coupler for online non-contact torque monitoring is suggested. FBG sensor can measure both strain and temperature, and has much batter characteristics than those of a strain gage. A rotary optical coupler is a optical connecting device between a rotating shaft and stationary side without any physical contact. It has been devised for transmitting light between a rotating optical fiber and a stationary optical fiber. The proposed method uses this rotary optical coupler to connect FBG sensors on the rotating shaft to instruments at stationary side. And a reference FBG sensor is also applied to compensate the insertion loss change of the rotary optical coupler due to rotation. Three FBG sensors have been fabricated in a single optical fiber. Two FBG sensors are attached on the shaft surface to measure torque and one sensor is installed at the shaft center to compensate the insertion loss change. The torque of a rotating shaft has been successfully measured by the suggested method proving its superior performance potential.