DOI QR코드

DOI QR Code

Highly Sensitive Optical-fiber Humidity Sensor Based on Nafion-PVA Sol-gel

  • Ning, Wang (College of Science, China University of Petroleum (East China)) ;
  • Yuhao, Li (College of Science, China University of Petroleum (East China)) ;
  • Xiaolei, Yin (College of Science, China University of Petroleum (East China)) ;
  • Wenting, Liu (College of Science, China University of Petroleum (East China)) ;
  • Shiqi, Liu (College of Science, China University of Petroleum (East China)) ;
  • Liang, Xu (College of Science, China University of Petroleum (East China)) ;
  • Xuwei, Zhao (College of Science, China University of Petroleum (East China)) ;
  • Yanxi, Zhong (College of Science, China University of Petroleum (East China))
  • Received : 2022.11.03
  • Accepted : 2023.01.07
  • Published : 2023.02.25

Abstract

A highly sensitive optical-fiber humidity sensor is demonstrated in this paper. By using Nafion-PVA sol-gel and single-mode optical fibers, the Fabry-Perot humidity sensor is easily fabricated. In the humidity range of 29%-72%, humidity-response experiments are carried out with a cycle of rising and falling humidity to investigate humidity-response characteristics. The experimental results show 2.25 nm/%RH sensitivity and a 0.9997 linear correlation coefficient, with good consistency. The changes in optical-path difference (OPD) and free spectral range (FSR) with humidity are also discussed. The humidity sensitivities of a typical sensor are 80.3 nm/%RH (OPD) and 0.03 nm/%RH (FSR). Furthermore, many humidity sensors with different Nafion-PVA sol-gel concentration and initial cavity length are experimentally investigated for humidity response. The results show that the sensitivity increases with higher Nafion ratio of the Nafion-PVA sol-gel. The influence of changing cavity length on sensitivity is not obvious. These results are helpful to research on optical-fiber humidity sensors with good performance, easy fabrication, and low cost.

Keywords

Acknowledgement

National Natural Science Foundation of China (No. 61890964); Key Deployment Project of Ocean Science Research Center of Chinese Academy of Sciences (COMS2020J11); National Training Program of Innovation and Entrepreneurship for Undergraduates (No. 202111025 and 202211033).

References

  1. Ravikant, S. Singh, G. Gupta, S. Yadav, P. K. Dubey, V. N.  Ojha, and A. Kumar, "Highly-sensitive potassium-tantalumniobium oxide humidity sensor," Sens. Actuator A: Phys. 295,  133-140 (2019).  https://doi.org/10.1016/j.sna.2019.05.023
  2. Y. Wang, R. W. Beasant, C. J. Simonson, and W. Shang, "Application of humidity sensors and an interactive device," Sens.  Actuators B: Chem. 115, 93-101 (2005). 
  3. P. J. Thomas and J. O. Hellevang, "A high response polyimide  fiber optic sensor for distributed humidity measurements,"  Sens. Actuators B: Chem. 270, 417-423 (2018).  https://doi.org/10.1016/j.snb.2018.05.011
  4. W. Zhang and D. J. Webb, "Humidity responsivity of poly  (methyl methacrylate)-based optical fiber Bragg grating sensors," Opt. Lett. 39, 3026-3029 (2014).  https://doi.org/10.1364/OL.39.003026
  5. M. Consales, G. Berruti, A. Borriello, M. Giordano, S. Buontempo, G. Breglio, A. Makovec, P. Petagna, and A. Cusano,  "Nanoscale TiO2-coated LPGs as radiation-tolerant humidity  sensors for high-energy physics applications," Opt. Lett. 39,  4128-4131 (2014).  https://doi.org/10.1364/ol.39.004128
  6. Y. Zhong, Z. Tong, W. Zhang, J. Qin, and W. Gao, "Humidity  and temperature sensor based on a mach-zehnder interferometer with a pokal taper and peanut taper," Appl. Opt. 58,  7981-7986 (2019).  https://doi.org/10.1364/ao.58.007981
  7. X. Fan, Q. Wang, M. Zhou, F. Liu, H. Shen, Z. Wei, F. Wang,  C. Tan, and H. Meng, "Humidity sensor based on a graphene  oxide-coated few-mode fiber mach-zehnder interferometer,"  Opt. Express. 28, 24682-24692 (2020).  https://doi.org/10.1364/oe.390207
  8. Y. Wang, Q. Huang, W. Zhu, and M. Yang, "Simultaneous  measurement of temperature and relative humidity based  on FBG and FP interferometer," IEEE Photonics Technol.  Lett. 30, 833-836 (2018).  https://doi.org/10.1109/LPT.2018.2818744
  9. D. L. Franzen and E. M. Kim, "Long optical-fiber Fabry-Perot  interferometers," Appl. Opt. 20, 3991-3992 (1981).  https://doi.org/10.1364/AO.20.003991
  10. A. D. Kersey, D. A. Jackson, and M. Corke, "A simple fibre  Fabry-Perot sensor," Opt. Commun. 45, 71-74 (1983).  https://doi.org/10.1016/0030-4018(83)90047-0
  11. F. Mitschke, "Fiber-optic sensor for humidity," Opt. Lett. 17,  967-969 (1989).  https://doi.org/10.1364/OL.17.000967
  12. V. Bhatia, K. A. Murphy, R. O. Claus, T. A. Tran, and J. A.  Greene, "Recent developments in optical-fiber-based extrinsic  Fabry-Perot interferometric strain sensing technology," Smart  Mater. Struct. 4, 246-251 (1995). 
  13. Z. Ran, Y. Rao, Z. Jian, Z. Liu, and X. Bing, "A miniature  fiber-optic refractive-index sensor based on laser-machined  Fabry-Perot interferometer tip," J. Lightwave Technol. 27,  5426-5429 (2009).  https://doi.org/10.1109/JLT.2009.2031656
  14. N. Wang, W.-H. Tian, H. S. Zhang, X.-D. Yu, X.-L. Yin, and  Y.-G. Du, "Optical fiber Fabry-Perot humidity sensor by  graphene quantum dots," Acta Photonica Sinica 49, 0906003  (2020). 
  15. L. H. Chen, T. Li, C. C. Chan, R. Menon, P. Zu, M. Shaillender, B. Neu, X. M. Ang, W. C. Wong, and K. C. Leong, "Chitosan based fiber-optic Fabry-Perot humidity sensor," Sens.  Actuators B: Chem. 169, 167-172 (2012).  https://doi.org/10.1016/j.snb.2012.04.052
  16. X. Wei, W. B. Huang, X. G. Huang, and C. Y. Yu, "A simple  fiber-optic humidity sensor based on extrinsic Fabry-Perot  cavity constructed by cellulose acetate butyrate film," Opt.  Fiber Technol. 19, 583-586 (2013).  https://doi.org/10.1016/j.yofte.2013.09.005
  17. C. Sui, "Design of fiber optic FPI humidity sensor based on polyimide film and its sensing performance," M. S. Dissertation, Harbin University of Science and Technology, Harbin (2022).
  18. Z. Zhang, H. Gong, C. Yu, K. Ni, and C. Zhao, "Fiber optic  Fabry-Perot interferometer based on HA/PVA composite film  for humidity sensing," Opt. Fiber Technol. 68, 102816 (2022). 
  19. M. Q. Chen, Y. Zhao, H.-M. Wei, C.-L. Zhu, and S. Krishnaswamy, "3D printed castle style Fabry-Perot microcavity on  optical fiber tip as a highly sensitive humidity sensor," Sens.  Actuators B: Chem. 328, 128981 (2021). 
  20. N. Wang, W. Tian, H. Zhang, X. Yu, X. Yin, Y. Du, and D. Li,  "An easily fabricated high performance Fabry-Perot optical  fiber humidity sensor filled with graphene quantum dots,"  Sensors 21, 806 (2021).  https://doi.org/10.3390/s21010054
  21. Y. Zhong, X. Dong, P. Xu, and J. Yang, "Optical fiber and  gelatin based Fabry-Perot interferometric humidity sensor,"  Acta Photonica Sinica 50, 1206003 (2021). 
  22. A. M. Shrivastav, D. S. Gunawardena, Z.-Y. Liu, and H.-Y.  Tam, "Microstructured optical fiber based Fabry-Perot interferometer as a humidity sensor utilizing chitosan polymeric  matrix for breath monitoring," Sci. Rep. 10, 6002 (2020). 
  23. A. Vaz, N. Barroca, M. Ribeiro, A. Pereira, and O. Frazao,  "Optical fiber humidity sensor based on polyvinylidene fluoride Fabry-Perot," IEEE Photonics Technol. Lett. 31, 549-552  (2019).  https://doi.org/10.1109/lpt.2019.2901571
  24. S. K. AI-Hayali, A. M. Salman, A. H. Al-Janabi, "High sensitivity balloon-like interferometric optical fiber humidity sensor  based on tuning gold nanoparticles coating thickness," Measurement 170, 108703 (2021). 
  25. W. Ke, Z. Li, Z. Zhou, Y. Lin, and Y. Xiao, "Reduced graphene  oxide-based interferometric fiber-optic humidity sensor," Acta  Photonica Sinica 39, 1206007 (2019). 
  26. P. Wang, K. Ni, B. Wang, Q. Ma, and W. Tian, "Methylcellulose  coated humidity sensor based on Michelson interferometer  with thin-core fiber," Sens. Actuator A: Phys. 288, 75-78  (2019).  https://doi.org/10.1016/j.sna.2019.01.031
  27. H. Guo, Y. Zhang, Y. Ning, M. Zhang, S. Li, Z. Liu, Y. Zhang, J.  Zhang, and L. Yuan, "Fiber humidity sensor based on SF-LiBr  composite film," IEEE Sens. J. 22, 16886-16891 (2022).  https://doi.org/10.1109/JSEN.2022.3186001
  28. B. Jiang, Z. Bi, Z. Hao, Q. Yuan, D. Feng, K. Zhou, L. Zhang,  X. Gan, and J. Zhao, "Graphene oxide-deposited tilted fiber  grating for ultrafast humidity sensing and human breath monitoring," Sens. Actuators B: Chem. 293, 336-341 (2019).  https://doi.org/10.1016/j.snb.2019.05.024
  29. C. Lang, Y. Liu, K. Cao, Y. Li, and S. Qu, "Ultra-compact,  fast-responsive and highly-sensitive humidity sensor based on  a polymer micro-rod on the end-face of fiber core," Sens. Actuators B: Chem. 290, 23-27 (2019).  https://doi.org/10.1016/j.snb.2019.03.099
  30. X. Wu, F. Gao, F. Jin, D. Wang, Y. Wang, Q. Chen, H. Yang, H.  Gong, Z. Wang, C. Zhao, and H. Liu, "Optical fiber humidity  sensor with C60-THAM as molecule receptors," Sens. Actuators B: Chem. 370, 132344 (2022). 
  31. S. Liu, Y. Ji, J. Yang, W. Sun, and H. Li, "Nafion film temperature/humidity sensing based on optical fiber Fabry-Perot  interference," Sens. Actuators B: Chem. 269, 313-321 (2018). https://doi.org/10.1016/j.sna.2017.11.034