• Title/Summary/Keyword: Fiber metal laminates

Search Result 50, Processing Time 0.025 seconds

Experimental study on fatigue crack propagation of fiber metal laminates

  • Xie, Zonghong;Peng, Fei;Zhao, Tianjiao
    • Steel and Composite Structures
    • /
    • v.17 no.2
    • /
    • pp.145-157
    • /
    • 2014
  • This study aimed to investigate the fatigue crack growth behavior of a kind of fiber metal laminates (FML) under four different stress levels. The FML specimen consists of three 2024-T3 aluminum alloy sheets and two layers of glass/epoxy composite lamina. Tensile-tensile cyclic fatigue tests were conducted on centrally notched specimen at four stress levels with various maximum values. A digital camera system was used to take photos of the propagating cracks on both sides of the specimens. Image processing software was adopted to accurately measure the length of the cracks on each photo. The test results show that: (1) a-N and da/dN-a curves of FML specimens can be divided into transient crack growth segment, steady state crack growth segment and accelerated crack growth segment; (2) compared to 2024-T3 aluminum alloy, the fatigue properties of FML are much better; (3) da/dN-${\Delta}K$ curves of FML specimens can be divided into fatigue crack growth rate decrease segment and fatigue crack growth rate increase segment; (3) the maximum stress level has a large influence on a-N, da/dN-a and da/dN-${\Delta}K$ curves of FML specimens; (4) the fatigue crack growth rate da/dN presents a nonlinear accelerated increasing trend to the maximum stress level; (5) the maximum stress level has an almost linear relationship with the stress intensity factor ${\Delta}K$.

Development of Low-Velocity Impact Analysis Model of Carbon-Steel Laminates through Finite Element Analysis (유한요소해석을 통한 탄소섬유-연강 적층판의 저속 충격 해석 모델 개발)

  • Park, Byung-Jin;Lee, Dong-Woo;Song, Jung-Il
    • Composites Research
    • /
    • v.31 no.5
    • /
    • pp.215-220
    • /
    • 2018
  • In this study, finite element analysis of Carbon-Steel Laminates with different layup pattern was conducted to verify similarity to the results of previous studies and to develop the effective model for low-velocity impact analysis. As in the experiment, Finite element analysis of the Fiber metal laminates (FMLs) with five different lamination patterns was carried out, and the impact resistance of the FMLs was confirmed by comparing the energy absorption ratio. The FMLs showed the higher energy absorption ratio than the mild steel having the same thickness, and it was confirmed that all the FMLs had the high energy absorption ratio over than 96%. In addition, the low-velocity impact analysis model proposed in this study can be effectively used to study composite forms and automotive structures.

The Influence of Resin Mixture Ratio for the Use of Prepreg on the Fatigue Behavior Properties in FRMLs

  • Song, Sam-Hong;Kim, Cheol-Woong
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.1 no.1
    • /
    • pp.33-41
    • /
    • 2000
  • Fiber reinforced metal laminates(FRMLs) were new type of hybrid materials. FRMLs consist of high strength metals(Al 5052-H34) and laminated fiber with structural adhesive bond. The effect of resin mixture ratios on the fatigue crack propagation behavior and mechanical properties of aramid fiber reinforced aluminum composites was investigated. The epoxy, diglycidylether of bisphenol A(DGEBA), was cured with methylene dianiline(MDA) with or without an accelerator(K-54). Eight kinds of resin mixture ratio were used for the experiment ; five kinds of FRMLs(1)(mixture of epoxy and curing agent) and three kinds of FRMLs(2)mixture of epoxy, curing agent and accelerator). The characteristic of fatigue crack propagation behavior and mechanical properties FRMLs(2) shows more effecting than that of FRMLs(1).

  • PDF

Load Transfer Behaviors near the Spliced Joint of the Fiber Metal Laminates (섬유금속적층판 연결접합 부위의 하중전달 거동 연구)

  • Choi, Heung-Soap;Roh, Hee-Seok;Jang, Yong-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1388-1393
    • /
    • 2003
  • In this study, analytic stress-displacement solutions are obtained by using a shear lag modeling constructed for the spliced joint area with a splicing gap filled with adhesive material of elastic modulus $E_{a}$ in the fiber metal laminate (FML) which is known to have excellent fatigue, corrosion and fire-flame resistant characteristics while with relatively low densities compared to the conventional aluminum alloys for lightweight structures.

  • PDF

Thermal residual stress behavior in fiber metal laminates (섬유금속적층판의 경화 시 발생하는 열 잔류응력에 관한 연구)

  • Kim, Se-Young;Choi, Won-Jong;Park, Sang-Yoon;Moon, Cho-Rok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.6
    • /
    • pp.39-44
    • /
    • 2005
  • Due to mismatch of thermal expansion coefficients between aluminum sheet and glass/epoxy sheet, thermal residual stresses generally appear in the FML. These stresses will affect the yield and fatigue strength of the FML. The numerically determined residual stresses in the Fiber-Metal-Laminates(FML) have been compared to the residual stresses measured from the curvature and tensile test methods. These two experimental methods have been developed for assessing the influence of residual stress in FML. Post-stretching process has been applied to remove the thermal residual stress and reverse the stress distribution. After post-stretching process, the residual stress has been measured from experiments. The results obtained show that analytical and experimental data are well agreed. The thermal residual stress can be removed by post-stretching process and it will increase the yield strength of FML.

Study on Enhancement for Interfacial Energy Release Rate of Adhesive Layer in Fiber Metal Laminates using Taguchi Method (다구찌 기법을 적용한 섬유금속적층판 접착층의 에너지 해방률 강화에 대한 연구)

  • Kil, Min-Gyu;Park, Eu-Tteum;Song, Woo-Jin;Kang, Beom-Soo
    • Composites Research
    • /
    • v.29 no.5
    • /
    • pp.249-255
    • /
    • 2016
  • The fiber metal laminates have been widely used at aerospace industry due to outstanding fatigue characteristic, corrosion resistance and impact resistance and so forth. The objective of this research is to establish the proper manufacturing variables for enhancing the interfacial energy release rate of fiber metal laminates using Taguchi method. The major variables of the manufacturing process are surface treatment, pre-specified temperature holding time and additional pressure. In order to determine the interfacial adhesive strength, the double cantilever beam and end-notched flexure tests were conducted. Afterward, Mode I and II energy release rates at various conditions were introduced signal-to-noise ratio with respect to each condition. Finally, the most efficient manufacturing variables are recognized using larger-the-better characteristic.

Evaluation of Delamination for Fiber Reinforced Metal Laminates Using a Pseudo Crack Model (가균열 모델을 이용한 섬유강화 금속적층재의 층간분리 평가법)

  • Song, Sam-Hong;Kim, Cheol-Woong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.2
    • /
    • pp.174-180
    • /
    • 2004
  • If Fiber Reinforced Metal Laminates(FRMLs) were delaminated, the decrease of stiffness and fiber bridging effect would result in the sudden aggravation of fatigue characteristics. It was reported that the delamination of FRMLs resulted from the crack of metal layers and that it depended on the crack growth. While cracks were made in FRMLs containing a saw-cuts under fatigue loading, cracks could be produced or not in FRMLs with circular holes under the same condition. When the FRMLs with the circular holes produce not the crack but the delamination, it is not possible to analyze it by the conventional fracture parameters expressed as the function of the crack. And so, this research suggests a new analytical model of the delamination to make the comparison of the delamination behavior possible whenever the cracks occur or not. Therefore, a new analytical model called Pseudo Crack Model(PCM) was suggested to compare the delaminations whether cracks were made or not. The relationship between the crack energy consumption rate( $E_{crack}$) and the delamination energy consumption rate( $E_{del}$) was discussed and it was also known that the effect of $E_{del}$ was larger than that of $E_{crack}$.

Residual Strength of Fiber Metal Laminates After Impact (충격손상을 받은 섬유 금속 적층판의 잔류 강도 연구)

  • Nam, Hyun-Wook;Lee, Young-Tae;Jung, Chang-Kyu;Han, Kyung-Seop
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.3
    • /
    • pp.440-449
    • /
    • 2003
  • Residual strength of fiber metal laminates after impact was studied. 3/4 lay up FML was fabricated using 4 ply prepreg, 2 ply aluminum sheets, and 1 ply steel sheet. Quasi isotropic ([0/45/90/-45]s) and orthotropic ([0/90/0/90]s) FRP were also fabricated to compare with FML. Impact test were conducted by using instrumented drop weight impact machine (Dynatup, Model 8250). Penetration load and absorbed energy of FML were superior to those of FRPs. Tensile tests were conducted to evaluate the residual strength after impact. Strength degradation of FML was less than that of FRP. This means that the damage tolerance of FML is excellent than that of FRP. Residual strength of each specimen was predicted by using Whitney and Nuismer(WN) Model. Impact damage area is assumed as a circular notch in WN model. Damage width is defined as the average of back face and top face damage width of each specimen. Average stress and point stress criterions were used to calculate the characteristic length. It is supposing that a characteristic length is a constant. The distribution of characteristic length shows that the assumption is reasonable. Prediction was well matched with experiment under both stress criterions.

Study on the Effect of Resin Mixture Ratios on the Fatigue Crack Propagation Behavior and Mechanical Property in a FRMLs (수지 혼합비가 FRMLs의 피로균열전파거동과 기계적 성질에 미치는 영향에 관한 연구)

  • Kim, Cheol-Woong;Sohn, Se-Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.8
    • /
    • pp.149-154
    • /
    • 1999
  • FRMLs(Fiber Reinforced Metal Laminates) is a new type of hybrid materials. FRMLs consists of high strength metal and fiber which are laminated using a structural adhesive bond(epoxy resin). The effect of resin mixture ratios on the fatigue crack propagation behavior and mechanical property of Aramid fiber reinforced aluminum composites was investigated. The epoxy, diglycidylether of bisphenol A(DGEBA) was cured with methylene dianiline(MDA) with or without accelerator(K-54). Eight kinds of resin mixture ratio were tested for the experiment ; five kinds of FRMLs(1))epoxy & curing agent) and three kinds of FRMLs(2)(epoxy & curing agent & accelerator). FRMLs(2) have a more effective characteristics on the fatigue crack propagation behavior and mechanical property than FRMLs(1)

  • PDF

The Effect of Resin Mixture Ratio on Characteristics of Tensile and T-peel Strength in Al/AFRP Laminates (Al/APRP 적층재의 수지혼합비가 인장 및 티-필(T-peel) 강도 특성에 미치는 영향)

  • Song, Sam-Hong;Kim, Cheol-Woong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.11
    • /
    • pp.2374-2382
    • /
    • 2002
  • Aluminum alloy/aramid fiber reinforced plastic(Al/AFRP) laminates consists of high strength metal(A15052) and laminated aramid fiber with structural adhesive bond. The mixture ratio effect of epoxy resin curing agent accelerator on the tensile strength and T-peel strength characteristic in Al AFRP laminates were investigated in this study. The epoxy. diglycidylether of bisphenol A(DCEBA), It'as cured by methylene dianiline(MDA) with or without an accelerator(K-54). Eight different kinds of resin mixture ratios were selected for the test , five kinds of Al/AFRP laminates were named as Al/AFRP(1) and three others of Al/AFRP laminates were named as Al/AFRP(2). The comparison of tensile strength and T-peel strength with variation of resin mixture ratio were studied. Respectively. Al/AFRP(1) and Al/AFRP(2) indicated approximately 6.0 times and 7.0 times more improved maximum tensile strength in comparison with those of monolithic A15052. Al/AFRP(2) indicated approximately 1.5 times more impoved maximum T-peel strengths in comparison with those of Al/AFRP(1). As results. Al/AFRP(2) turned out to have more effective characteristics on the tensile strength and T-peel strength than those of Al/AFRP(1).