• Title/Summary/Keyword: Fiber distribution

Search Result 985, Processing Time 0.028 seconds

An Estimate of Flexural Strength for Reinforce Concrete Beams Strengthened with CFRP Sheets (탄소섬유쉬트에 의해 휨보강된 RC보의 휨강도 추정)

  • Park Jong-Sup;Jung Woo-Tai;You Young-Jun;Park Young-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.2 s.86
    • /
    • pp.213-220
    • /
    • 2005
  • Carbon fiber reinforced polymer (CFRP) sheets are becoming increasingly popular for strengthening deteriorated concrete bridges due to their excellent strength and stiffness-to-weight ratio, corrosion resistance, and convenience of construction work. The purpose of this study is to compare the performance of CFRP-strengthened reinforced concrete (RC) beams and to develop a new design formula. Simple beams with 3 m span length were tested to investigate the effect of reinforcing steel ratio and CFRP-reinforcing ratio on the flexural behavior of strengthened RC beams. The test results were analyzed with the special emphasis on the failure mode, the maximum load, and the strain distribution in the section. It is shown that the strain of the strengthened beams is not linearly distributed in the section. A new design formula based on the non-linear distribution of the strain has been derived and showed that it has a good agreement with the various domestic and foreign test results.

Buckling analysis of nano composite sandwich Euler-Bernoulli beam considering porosity distribution on elastic foundation using DQM

  • Nejadi, Mohammad Mehdi;Mohammadimehr, Mehdi
    • Advances in nano research
    • /
    • v.8 no.1
    • /
    • pp.59-68
    • /
    • 2020
  • In the present study, buckling analysis of sandwich composite (carbon nanotube reinforced composite and fiber reinforced composite) Euler-Bernoulli beam in two configurations (core and layers material), three laminates (combination of different angles) and two models (relative thickness of core according to peripheral layers) using differential quadrature method (DQM) is studied. Also, the effects of porosity coefficient and different types of porosity distribution on critical buckling load are discussed. Using sandwich beam, it shows a considerable enhancement in the critical buckling load when compared to ordinary composite. Actually, resistance against buckling in sandwich beam is between two to four times more. It is also showed the critical buckling loads of laminate 1 and 3 are significantly larger than the results of laminate 2. When Configuration 2 is used, the critical buckling load rises about 3 percent in laminate 1 and 3 compared to the results of configuration 1. The amount of enhancement for laminate 3 is about 17 percent. It is also demonstrated that the influence of the core height (thickness) in the case of lower carbon volume fractions is ignorable. Even though, when volume fraction of fiber increases, differences grow smoothly. It should be noticed the amount of decline has inverse relationship with the beam aspect ratio. Among three porosity patterns investigated, beam with the distribution of porosity Type 2 (downward parabolic) has the maximum critical buckling load. At the end, the first three modes of buckling will be demonstrated to investigate the effect of spring constants.

Using XFEM technique to predict the damage of unidirectional CFRP composite notched under tensile load

  • Benzaama, A.;Mokhtari, M.;Benzaama, H.;Gouasmi, S.;Tamine, T.
    • Advances in aircraft and spacecraft science
    • /
    • v.5 no.1
    • /
    • pp.129-139
    • /
    • 2018
  • The composite materials are widely used in aircraft structures. Their relative rigidity/weight gives them an important advantage over the metal structures. The objective of this work is to analyze by the finite element method the mechanical behavior of composite plate type notched with various forms under tensile load. Two basic parameters were taken into consideration. The first, the form of the notch in order to see its effect on the stress and the failure load. The second, we studied the influence of the locale orientation of fiber around the plate's notch. These parameters are studied in order to see their effects on the distribution stress and failure load of the plate. The calculation of the failure load is determined numerically with the numerical code ABAQUS using the XFEM (extended Finite Element Modeling) based on the fracture mechanics. The result shows clearly that it is important to optimize the effect of fiber orientation around the notch.

New Concept of Stiffness Improvement in Paper and Board

  • Seo, Yung B.
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2001.11a
    • /
    • pp.168-182
    • /
    • 2001
  • A new concept of stock preparation for the increase of bending stiffness in paper and board was proposed. The 'stiff' fibers, which were mechanically not treated or treated slightly to remove fiber curls, were combined with extensively refined fibers (ERF) to produce higher stiffness papers than those where the whole fibers were refined. The combination of 'stiff' fibers and extensively refined fibers produced higher stiffness at the same tensile strength than the control furnish, in which all the fibers are refined together. In this concept, the fibers from recycled papers could be as much useful as the virgin fibers as long as they are stiff enough or they can produce highly bondable fiber fractions by extensive refining. Use of the concept in real paper mill needs considerations such as increase of refining energy, slower drainage, and added drying burden, but savings of wood fibers, utilization of more recycled fibers, and increase of physical properties may offset the negative concerns. The success of this concept implementation in mills, therefore, depends on the wood fiber market around the mills and the proper decision making for the papermakers about how to apply this concept.

  • PDF

A Study on Thermal Diffusivity Measurement by Improvement of Laser Flash Uniformity Using an Optical Fiber (광섬유를 이용한 레이저섬광의 균일분포 증진효과에 따른 열확산계수 측정에 관한 고찰)

  • Lee, Won-Sik;Bae, Shin-Chul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.8
    • /
    • pp.1073-1082
    • /
    • 1998
  • When thermal diffusivity is measured by laser flash method, the thermal diffusivity call be calculated front the assumption of the uniformly heated whole surface of the specimen. It has been known that the approximate 5% error is made by the non-uniform energy distribution on the specimen surface of laser pulse heat source. In this study, to obtain the highly-uniformed laser beam, which has both the low non-uniform heating error from non-uniform laser beam and the energy loss, research was carried out on no transmitting loss by optical fiber and high repetitions. In addition, heating error and thermal diffusivity were measured as the measuring positions were varied and compared with the results using the uniform and the non-uniform laser beams. In addition, dole to using the uniformalized laser beam, the whole surface of the specimen was heated uniformly and as a result, it was the thought that this was very effective to reduce the variations of the errors of the thermal diffusivity as the measuring positions were varied. It can be obtained that when the thermal diffusivity of POCO-AXM-5Q1 of SRM in NBS was measured with both the uniform and the non-uniform laser beams, the dispersion error of the former was from 2 to 2.5%, which was more improved than that of the latter.

A study of Fiber-Optic Voltage Sensor in a distribution automated switch (배전자동화 개폐기에서 광전압센서에 관한 연구)

  • 오상기;김요희;서승현;이희철;양승국
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2000.05a
    • /
    • pp.493-496
    • /
    • 2000
  • This study is about the design and fabrication of optical voltage sensor modules improved in the insulation reliability, where we adopted the space-division voltage system using the auxiliary electrodes to apply the uniform electric fields to the BSO, the device of which the polarization state varies with the variation of refractive index in the electric fields. We measured the output of fiber-Optic Voltage Sensors with the temperature changes in the thermostatic oven. And we measured the output of Fiber-Optic Voltage Sensors after setting its up in the disttibuion automated switch being apply 60Hz alternating voltage from 6.6kV to 17.BkV. In result, measured error characteristic is good, so we can judge it is applicable to the practical case

  • PDF

EVALUATION OF REORIENTATION AND DISTRIBUTION OF STEEL FIBERS IN SFRC (강섬유 보강 콘크리트 내 강섬유의 재향성 및 분포특성에 관한 연구)

  • 이차돈
    • Magazine of the Korea Concrete Institute
    • /
    • v.2 no.3
    • /
    • pp.65-72
    • /
    • 1990
  • Theoretical expressions were dcrived for the numher of fibers per unit cross-sectional area in fiber reinforced concrete, with due consideration given to the effects of the surrounding boundaries. The number of fibers per unit cross-sectional area in steel fiber reinforced concrete was also measured experimentally for the specimens incorporating various volume fractions of fibers of different types. Statistical evaluation of the measured value was then performed in order to assess the differences in fiber concentration at different location on tbe cross section. Degree of reorientation of steel fibers in concrete occuring during vibration was examined by com¬paring the differences in the computed and measur'ed values of the number of fibers per unit cross-sectional area.

Mathematical model for assessment of the safety of over three-span steel beams based on average strains from long gage optic sensor (평균변형률을 이용한 3경간 이상 연속 철골보의 안전성 평가 기법)

  • Jung Seong-Moon;Lee Hong-Min;Park Hyo-Seon
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.159-166
    • /
    • 2006
  • Although the strain distribution along the length of a beam in buildings or infrastructures is non-uniform, most fiber optic sensors are point sensors that can measure the strain only at a local point of a beam. Long gage fiber optic sensors that measure integrated strain over a relatively long length can consider strain variation. This type of sensor was found to be efficient and useful for monitoring large-scale structures. On the other hand, the maximum strain or stress in a beam can not be measured with long gage optic sensors. However, for the assessment of the safety of multi-span steel beams subjected to various vertical loads, the maximum strain or stress measured during monitoring is required for comparison with the allowable stress of the beam calculated by a design code. Therefore, in this paper, mathematical models are presented for determination of the maximum values of strains in more three-span steel beams based on the average strains measured by long gage optic sensors.

  • PDF

Comparative Anatomy of Diffuse-Porous Woods Grown in Korea (I) -Characteristics by Simple Correlation and Principal Component Analysis- (한국산(韓國産) 산공재(散孔材)의 해부학적(解剖學的) 특성(特性)에 관한 비교연구(比較硏究)(I) -단순상관(單純相關)과 주성분(主成分) 분석(分析)에 의한 특성(特性)-)

  • Chung, Youn-Jib;Lee, Phil-Woo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.23 no.4
    • /
    • pp.46-53
    • /
    • 1995
  • The anatomy of Korean diffuse-porous woods, 36 families, 75 genera, 145 species, 215 specimens was described and analyzed. Sixteen wood anatomical characters, habit and phenology factors were determined by simple correlation and principal component analysis. Strong positive correlations were found between vessel element length and fiber length, ray width and ray height, simple pits of fiber wall and paratracheal parenchyma distribution. The results of principal component analysis (PCA) disclose the primitive characteristics and the direction of xylem evolution of Korean diffuse-porous woods. The xylem evolution scenario for Korean dicotyledonous woods is considered to be developed in the direction of decreasing trends of vessel frequency, vessel element length, and length/diameter(L/D) ratio of vessel element but increasing trends of vessel diameter, fiber length/vessel element length(F/V) ratio, libriform wood fibers, simple perforation, and homogeneous ray composition. Increase of vessel diameter and decrease of vessel frequency seem to be related to the improvement of conductive efficiency, and increase of the vessel element length and occurrence of scalariform perforation in vessel element may be related to enhanced of conductive safety. Also the libriform wood fibers and ray features appear to have relationship with mechanical support and nutrient metabolism, respectively.

  • PDF

Starch-Fatty Complex Modified Filler for Papermaking

  • Yoon, Se-Young;Deng, Yulin
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2006.06a
    • /
    • pp.79-84
    • /
    • 2006
  • In order to improve filler-fiber bonding in paper, starch-filler composites were prepared by a starch-fatty acid complex formation method. These composites were used as a papermaking filler to improve the physical properties of the paper, filler retention and the sizing effect. The solubility of the starch-fatty acid complex in water at different temperatures was measured. The results indicated that the starch-fatty acid complexes have very low solubility in water below $70^{\circ}C$, which can be easily coated on clay surface to modify clay-fiber bonding ability. The clay-starch composite filled handsheets showed that paper strength could increase more than $100{\sim}200%$ compared to untreated clay. It was found that ZDT of the handsheet decreased as the clay content increased when unmodified clay was used, but it increased when the starch-fatty acid composite modified filler was used. It was also found that the presence of fatty acide in the complex increased the water-repellant property of the handsheet, which can be used to aid in sizing during papermaking. Filler distribution and bonding characteristics between the composite and fiber were investigated using Scanning Electron Microscopy(SEM).

  • PDF