• Title/Summary/Keyword: Fiber cross section

Search Result 239, Processing Time 0.025 seconds

Image Analysis of the Luster of Fabrics with Modified Cross-section Fibers

  • Shin Kyung In;Kim Seong Hun;Kim Jong Jun
    • Fibers and Polymers
    • /
    • v.6 no.1
    • /
    • pp.82-88
    • /
    • 2005
  • We have investigated the luster of modified cross-sectional fiber fabrics as one of the essential quality estimates for clothing development. We have confirmed an objective evaluation method, and have determined the experimental luster char­acteristics of modified cross-section fibers. The cross-section of the fibers in a fabric affects the appearance of a textile. We used the image analysis method to investigate the luster to determine the critical factors influencing the appearance of modi­fied cross-section fiber fabrics. For similarly structured textiles in a component fabric, clear differences were observed in the fabric weave, density, percentage, and total area of blobs, which is image region. Color played a decisive role in the luster of the textiles, and luster was not significantly influenced by the modified cross-section fabric weave. In addition, the degree of luster did not increase in the order plain to twill to satin for modified cross-sectional fiber fabrics. All the split-type microfi­bers exhibited higher numerical luster values (percentage of pixels, and number and total area of blobs) than sea-island microfibers did. The degree of luster of the modified cross-sectional fiber fabrics was not high at specular reflection angles.

Fiber Orientation Factor on a Circular Cross-Section in Concrete Members (콘크리트 원형단면에서의 섬유분포계수)

  • Lee, Seong-Cheol;Oh, Jeong-Hwan;Cho, Jae-Yeol
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.3
    • /
    • pp.307-313
    • /
    • 2014
  • In order to predict the post-cracking tensile behavior of fiber reinforced concrete, it is necessary to evaluate the fiber orientation factor which indicates the number of fibers bridging a crack. For investigation of fiber orientation factor on a circular cross-section, in this paper, cylindrical steel fiber reinforced concrete specimens were casted with the variables of concrete compressive strength, circular cross-section size, fiber type, and fiber volumetric ratio. The specimens were cut perpendicularly to the casting direction so that the fiber orientation factor could be evaluated through counting the number of fibers on the circular cross-section. From the test results, it was investigated that the fiber orientation factor on a circular cross-section was lower than 0.5 generally adopted, as fibers tended to be perpendicular to the casting direction. In addition, it was observed that the fiber orientation factor decreased with an increase of the number of fibers per unit cross-section area. For rational prediction of the fiber orientation factor on a circular section, a rigorous model and a simplified equation were derived through taking account of a possible fiber inclination angle considering the circular boundary surface. From the comparison of the measured data and the predicted values, it was found that the fiber orientation factor was well predicted by the proposed model. The test results and the proposed model can be useful for researches on structural behavior of steel fiber reinforced columns with a circular cross-section.

Microscopic Observation of Surface and Cross Section of Korean Traditional Paper-Hanji (전통한지 표면 및 단면의 현미경적 관찰)

  • Yoon, Seung-Lak
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.47 no.6
    • /
    • pp.49-56
    • /
    • 2015
  • To investigate fiber orientation of Korean traditional paper, Hanji, the fiber arrangements on the surface and cross section of Hanji were observed by scanning electron microscope (SEM). The surface observation showed that the fibers of traditional paper were arranged in vertical and horizontal directions, and those of ssangbal sheet forming were arranged more in vertical direction. The fibers of machine made Hanji and copying paper were usually arranged in vertical direction. As for the observation of cross section of traditional paper, fibers arranged in horizontal direction tended to be increased with the increase of thicknesses. The thick traditional paper have cracks in the middle part of structural section of paper. They were larger in cross section in horizontal direction than in vertical direction. The horizontal arrangement of traditional paper seemed to be about 8% to 14% higher to the vertical arrangement, which is very lower to other papers.

Sound Characteristics according to Cross-sectional Shapes of Fibers

  • Kim, Chunjeong;Cho, Gilsoo;Hong, Kyoung A.;Shim, Hyun Joo
    • Fibers and Polymers
    • /
    • v.4 no.4
    • /
    • pp.199-203
    • /
    • 2003
  • In order to investigate the effects of cross-sectional shapes on the sound characteristics of polyester fibers, 10 specimens were woven into a twill structure made of round, hollow, triangular, u-shape, cruciform, and composite cross-sectional (▲/▲ ,()/▲, Y/Y) fibers. Their rustling sounds were recorded, and their sound spectra were obtained from FFT analysis. Physical sound parameters (LPT, ΔL, Δf) and Zwicker's psychoacoustic parameters of the loudness(Z), sharpness(Z), roughness(Z), and fluctuation strength(Z) were calculated from the sound spectra. According to noncircular cross-section fibers, the hollow shaped fiber had the highest value of LPT, ΔL, loudness(Z), and fluctuation strength(Z). The triangular shaped fiber had a lower value of LPT, ΔL, loudness(Z), and roughness(Z) than those of the round shaped fiber. Among composite cross-section fibers, C1(▲/▲) and C3 (Y/Y) had higher values of LPT, ΔL, Δf and loudness(Z) but C2(()/▲) had lower values. Also the LPT, ΔL, sharpness(Z), and roughness(Z) values of different denier were similar to each other, but the Δf and loudness(Z) values increased as the denier increased.

Mechanical Characteristics of GF/recycled PET Thermoplastic Composites with Chopped Fiber According to Cross Section (단면형상에 따른 GF/rPET 열가소성 복합재료의 물리적 특성 연구)

  • Kim, Ji-hye;Lee, Eun-soo;Kim, Myung-soon;Sim, Jee-hyun
    • Textile Coloration and Finishing
    • /
    • v.29 no.4
    • /
    • pp.239-246
    • /
    • 2017
  • Recently fiber-reinforced thermoplastic composites have attracted great interest from industry and study because they offer unique properties such as high strength, modulus, impact resistance, corrosion resistance, and damping reduction which are difficult to obtain in single-component materials. The demand for plastics is steadily increasing not only in household goods, packaging materials, but also in high-performance engineering plastic and recycling. As a result, the technology of recycling plastic is also attracting attention. In particular, many paper have studied recycling systems based on recycled thermoplastics. In this paper, properties of Glass Fiber Reinforced Thermoplastic(GFRTP) materials were evaluated using recycled PET for injection molding bicycle frame. The effect on thermal and mechanical properties of recycled PET reinforced glass chop fiber according to fiber cross section and fiber content ratio were studied. And it was compared void volume and torque energy by glass fiber cross section, which is round section and flat section. Mechanical characteristics of resulting in GF/rPET has been increased by increasing fiber contents, than above a certain level did not longer increased. And mechanical properties of flat glass fiber reinforced rPET with low void volume were most excellent.

The Preparation of Alumina Fiber by Sol-gel Method: (II) Properties of Fiber Spun by TEA Complexed Sol (졸겔법에 의한 알루미나 섬유의 제조: (II) TEA 착체졸로부터 방사한 섬유의 특성분석)

  • 최용수;이해욱;이종혁;박용일;김창은
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.9
    • /
    • pp.995-1002
    • /
    • 1995
  • The alumina fiber was obtained by extruding the TEA complexed polymeric sol, synthesized by the alkoxide sol-gel method, through nozzle. The purpose of this study was to investigate the properties of fiber spun by TEA complexed sol. The analysis of sol indicated that TEA was bonded at alkoxide precursor and the optimum molar ratio for spinning was 0.5 mole of TEA, 3 mole of H2O. The cross section of the fiber from circular nozzle was not circular but oval, which indicated that the shape of nozzle did not affect the shape of fiber. The diameter of the fiber was about 100 ${\mu}{\textrm}{m}$ in the state of dried gel fiber, 60${\mu}{\textrm}{m}$ in calcined fiber, and the tensile strength of the fiber calcined at 90$0^{\circ}C$ was 2.1$\times$108 Pa.

  • PDF

Bending Characteristic Evaluations Circular Cross-section Carbon Composite and Hybrid Structural Material (원통단면 탄소복합재와 혼성 구조부재의 굽힘 특성 평가)

  • Kim, Jung-Ho;Jeong, Jong-An;Kim, Ji-Hoon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.3
    • /
    • pp.421-424
    • /
    • 2012
  • Carbon Fiber reinforced composite material can be designed for the optimized performances of structural member that have achieve appropriate mechanical properties with cross-sectional shape, fiber direction, stacking sequence and thickness. So there are needed extensive databases each optimal design of CFRP structural member by impact through the preparation of different shape, interface number, thickness and stacking angle. When pressure is applied to structural member, compression, bending and torsion is shown on the corresponding member. For the effective utilization of fiber reinforced composite material as main structural member, optimized design technology should be established to maximize mechanical properties for compression, bending and torsion. In this paper, CFRP prepreg sheet with different stacking angle is manufactured in CFRP and hybrid(Al+CFRP) with circular cross-section. Strength and stiffness is gotten respectively by flexure test. CFRP structure and hybrid structure can be compared with each other. The best design guideline can be analyzed by use of this study result.

Experimental Study on GFRP Reinforcing Bars with Hollow Section (중공형 GFRP 보강근의 인장성능 실험연구)

  • You, Young-Jun;Park, Ki-Tae;Seo, Dong-Woo;Hwang, Ji-Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.1
    • /
    • pp.45-52
    • /
    • 2015
  • Fiber-reinforced polymer (FRP) has been generally accepted by civil engineers as an alternative for steel reinforcing bars (rebar) due to its advantageous specific tensile strength and non-corrosiveness. Even though some glass fiber reinforced polymer (GFRP) rebars are available on a market, GFRP is still somewhat uncompetitive over steel rebar due to their high cost and relatively low elastic modulus, and brittle failure characteristic. If the price of component materials of GFRP rebar is not reduced, it would be another solution to increase the performance of each material to the highest degree. The tensile strength generally decreases with increasing diameter of FRP rebar. One of the reasons is that only fibers except for fibers in center resist the external force due to the lack of force transfer and the deformation of only outer fibers by gripping system. Eliminating fibers in the center, which do not play an aimed role fully, are helpful to reduce the price and finally FRP rebar would be optimized over the price. In this study, the effect of the hollow section in a cross-section of a GFRP rebar was investigated. A GFRP rebar with 19 mm diameter was selected and an analysis was performed for the tensile test results. Parameter was the ratio of hollow section over solid cross-section. Four kinds of hollow sections were planned. A total of 27 specimens, six specimens for each hollow section and three specimens with a solid cross-section were manufactured and tested. The change by the ratio of hollow section over solid cross-section was analyzed and an optimized cross-section design was proposed.

A Study on Properties of the Glass Fiber Reinforced PPS Composites for Automotive Headlight Source Module (자동차 전조등 광원 모듈용 유리섬유강화 PPS 복합재료 특성 연구)

  • Heo, Kwang-Yeol;Park, Sung-Min;Lee, Eun-Soo;Kim, Myung-Soon;Sim, Ji-Hyun;Bae, Jin-Seok
    • Composites Research
    • /
    • v.29 no.5
    • /
    • pp.293-298
    • /
    • 2016
  • In this paper, Glass Fiber Reinforced Thermoplastic (GFRTP) for automotive headlight source module was fabricated by compounding and injection molding using PPS (Poly Phenylene Sulfide) resin with glass fiber which has three cross section (round type, cocoon type, flat type). Tensile, flexural, impact properties were investigated on effect of cross section, glass fiber contents. And it was observed flatness, dimensional stability, fluidity depending on glass fiber cross section. As a result, flat glass fiber reinforced thermoplastic's mechanical properties were most excellent. Also, dimensional stability and flatness showed better results when using flat glass fiber.

Optimum formation method of curved core cross section of silica fiber (실리카 광섬유 코어의 곡률단면 형성 최적화 방법)

  • Kim, Se-Min;Kim, Seung-Hwan;Lee, Seung-Hun;Hwang, Seok-Hyeon;Kim, Mi-Gyeong;HwangBo, Chang-Gwon;Kim, Gyeong-Heon
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2009.10a
    • /
    • pp.288-289
    • /
    • 2009
  • We report an optimum fabrication condition for formation of concave lens shaped core cross-section of silica single-mode fibers with hydrofluoric (HF) acid solutions and arc discharge. A desired depth of curved cross-section of the silica fiber core and its surface smoothness were obtained with optimized concentration of the HF solution, etching time, and arc discharge condition.

  • PDF