• 제목/요약/키워드: Fiber blending ratio

검색결과 37건 처리시간 0.028초

Compression Properties of Weft Knitted Fabrics Consisting of Shrinkable and Non-Shrinkable Acrylic Fibers

  • Bakhtiari M.;Najar S. Shaikhzadeh;Etrati S. M.;Toosi Z. Khorram
    • Fibers and Polymers
    • /
    • 제7권3호
    • /
    • pp.295-304
    • /
    • 2006
  • High-bulk worsted yams with different shrinkable and non-shrinkable acrylic fibers blend ratios are produced and then single jersey weft knitted fabrics with three different structures and loop lengths are constructed. The physical properties of produced yams and compression properties of produced fabrics at eight pressure values (50, 100, 200, 500, 1000, 1500 and $2000 g/cm^2$) were measured using a conventional fabric thickness tester. Then, weft-knitted fabric compression behavior was analyzed using a two parameters model. It is found that at 40 % shrinkable fibre blending ratio the maximum yam bulk, shrinkage, abrasion resistance and minimum yarn strength are obtained. It is also shown that high-bulk acrylic yarn has the highest elongation at 20 % shrinkable fibre blend ratio. The statistical regression analysis revealed that the compression behavior of acrylic weft-knitted fabrics is highly closed to two parameter model proposed for woven fabrics. It is also shown that for weft-knitted structure, there is an incompressible layer (V') which resists against high compression load. Acrylic weft-knitted fabrics with knit-tuck structure exhibit higher compression rigidity and lower softness than the plain and knit-miss structures. In addition, at 20 % shrinkable fibre blend ratio, the high-bulk acrylic weft-knitted fabrics are highly compressible.

Current Status of $SiC_{f}/SiC$ Composites Material in Fusion Reactor

  • Yoon, Han-Ki;Lee, Sang-Pill
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.166-171
    • /
    • 2007
  • The characterization of monolithic SiC and SiCf/SiC composite materials fabricated by NITE and RS processes was investigated in conjunction with the detailed analysis of their microstructure and density. The NITE-SiC based materials were fabricated, using a SiC powder with average size of 30 nm. RS- SiCf/SiC composites were fabricated with a complex slurry of C and SiC powder. In the RS process, the average size of starting SiC particle and the blending ratio of C/SiC powder were $0.4\;{\mu}m$ and 0.4, respectively. The reinforcing materials for /SiC composites were BN-SiC coated Hi-Nicalon SiC fiber, unidirectional or plain woven Tyranno SA SiC fiber. The characterization of all materials was examined by the means of SEM, EDS and three point bending test. The density of NITE-SiCf/SiC composite increased with increasing the pressure holding time. RS-SiCf/SiC composites represented a great decrease of flexural strength at the temperature of $1000\;^{\circ}C.$

  • PDF

A Kinetic Study of Thermal Degradations of Chitosan/Polycaprolactam Blends

  • Liao, Shen-Kun;Hung, Chi-Chih;Lim, Ming-Fung
    • Macromolecular Research
    • /
    • 제12권5호
    • /
    • pp.466-473
    • /
    • 2004
  • We have used FT-IR spectra to explain the effects of hydrogen bonding between chitosan and polycaprolactam (PA6). A dynamic mechanical analysis study suggested that the optimum chitosan and PA6 miscibility under the conditions of this experiment were obtained at a blending ratio of 40:60. We studied the thermal degradation of chitosan blended with PA6 (chitosan/PA6) by thermogravimetric analysis and kinetic analysis (by the Ozawa method). Dry chitosan and PA6 exhibited a single stage of thermal degradation and chitosan/PA6 blends having> 20 wt% PA6 exhibited at least two stages of degradation. In chitosan/PA6 blends, chitosan underwent the first stage of thermal degradation; the second stage proceeded at a temperature lower than that of PA6, because the decomposition product of chitosan accelerated the degradation of PA6. The activation energies of the blends were between 130 and 165 kJ/mol, which are also lower than that of PA6.

Efficient influence of cross section shape on the mechanical and economic properties of concrete canvas and CFRP reinforced columns management using metaheuristic optimization algorithms

  • Ge, Genwang;Liu, Yingzi;Al-Tamimi, Haneen M.;Pourrostam, Towhid;Zhang, Xian;Ali, H. Elhosiny;Jan, Amin;Salameh, Anas A.
    • Computers and Concrete
    • /
    • 제29권 6호
    • /
    • pp.375-391
    • /
    • 2022
  • This paper examined the impact of the cross-sectional structure on the structural results under different loading conditions of reinforced concrete (RC) members' management limited in Carbon Fiber Reinforced Polymers (CFRP). The mechanical properties of CFRC was investigated, then, totally 32 samples were examined. Test parameters included the cross-sectional shape as square, rectangular and circular with two various aspect rates and loading statues. The loading involved concentrated loading, eccentric loading with a ratio of 0.46 to 0.6 and pure bending. The results of the test revealed that the CFRP increased ductility and load during concentrated processing. A cross sectional shape from 23 to 44 percent was increased in load capacity and from 250 to 350 percent increase in axial deformation in rectangular and circular sections respectively, affecting greatly the accomplishment of load capacity and ductility of the concentrated members. Two Artificial Intelligence Models as Extreme Learning Machine (ELM) and Particle Swarm Optimization (PSO) were used to estimating the tensile and flexural strength of specimen. On the basis of the performance from RMSE and RSQR, C-Shape CFRC was greater tensile and flexural strength than any other FRP composite design. Because of the mechanical anchorage into the matrix, C-shaped CFRCC was noted to have greater fiber-matrix interfacial adhesive strength. However, with the increase of the aspect ratio and fiber volume fraction, the compressive strength of CFRCC was reduced. This possibly was due to the fact that during the blending of each fiber, the volume of air input was increased. In addition, by adding silica fumed to composites, the tensile and flexural strength of CFRCC is greatly improved.

마직물의 태에 관한 연구;주관적 평가척도개발과 선호도를 중심으로 (The Study on the Hand of Bast Blended Fabrics -The development of subjective evaluation method and fabrics' preference-)

  • 박성혜;유효선
    • 한국의류학회지
    • /
    • 제23권8호
    • /
    • pp.1194-1205
    • /
    • 1999
  • The hand characteristics of bast blended fabrics are studied by a subective evaluation method. To offer basic data for development of better hand of bast fiber fabrics customer's hand preference surveys are executed as well. IN this study 51 varieties of linen or ramie blended fabrics of various blending ratio density and thickness and Hansan ramie Chinese ramie and a Shingosen fabics of various blending ratio density and thickness and Hansan ramie Chinese ramie and a Shingosen farbic and used. To evaluate the hand of the fabrics subjectively nine ranks' semantic differential scale questions of 26 items are developed with adjective pairs. A seven ranks' scale is also developed to evaluate hand preferences in blouse and jacket cloths, Through subjective evaluation of bast blended fabrics the 26 items could be classified into seven kinds of hand classification : surface characteristics extensibility/drapability felling of heaviness stiffness resilience moisture property and feeling of density. The cumulative variance value explained by these seven factors is 67.18% According to the results of fabrics' preference by age groups no significant differences are found in blouse cloths but a few significant differences are found among different age groups in jacket clothes. However experts and non-experts show considerable differences on preference It can be concluded that fabrics' preference I more dependent on professionality than on age. In the survey experts. However more drapery cloths are preferred by experts and cloths with drier touch are preferred by non-experts. Experts prefer rougher less even less winding heavier and sparser fabrics but non-experts prefer rougher lighter thinner and stiffer fabrics as jacket cloths.

  • PDF

양모/아크릴 혼방사 편성물의 방축 효과 및 물성에 관한 연구 (Shrink-Resist Effects and Properties of the Knitted Fabrics from Wool/Acrylic Fiber Blends)

  • 이연희;곽수경;박명자
    • 복식문화연구
    • /
    • 제12권6호
    • /
    • pp.945-952
    • /
    • 2004
  • Shrink-resist effects and properties of the knitted fabrics from wool/acrylic(W/A) fiber blends were determined to find out an optimal blending ratio keeping the quality properties of wool products. The test fabrics were knitted by a weft knitting machine with all needle knitting structure ($0{\times}0$ rib) under the same knitting conditions with five different types of yarns: $W100\%,\;A100\%$, and W/A blended yarns(70/30, 50/50, 30/70). Shrinkage during repeated washing, electrostatic propensity, thermal resistance and pilling propensity of W/A knits. The shrink resistance was significantly enhanced on repeated washing of W/A knits, especially, over $50\%$ acrylic blended knits. Addition of strong physical force and alkali detergent applied in this washing experiment brought about superior effects with the low shrinkage rate although it was very severe washing conditions for wool fabrics. The results from the washing experiment implies that W/A blend knits can be machine washed at individual households with other ordinary laundry. There was some changes and variation found in thermal resistance, electrostatic propensity, and pilling. W/A 50/50 blended knits did not bring serious changes to other physical properties comparing with original wool, which helps consumers care wool knitted clothes more conveniently.

  • PDF

PTC Behavior of Polymer Composites Containing Ionomers upon Electron Beam Irradiation

  • Kim, Jong-Hawk;Cho, Hyun-Nam;Kim, Seong-Hun;Kim, Jun-Young
    • Macromolecular Research
    • /
    • 제12권1호
    • /
    • pp.53-62
    • /
    • 2004
  • We have prepared polymer composites of low-density polyethylene (LDPE) and ionomers (Surlyn 8940) containing polar segments and metal ions by melt blending with carbon black (CB) as a conductive filler. The resistivity and positive temperature coefficient (PTC) of the ionomer/LDPE/CB composites were investigated with respect to the CB content. The ionomer content has an effect on the resistivity and percolation threshold of the polymer composites; the percolation curve exhibits a plateau at low CB content. The PTC intensity of the crosslinked ionomer/LDPE/CB composite decreased slightly at low ionomer content, and increased significantly above a critical concentration of the ionomer. Irradiation-induced crosslinking could increase the PTC intensity and decrease the NTC effect of the polymer composites. The minimum switching current (Ι$\sub$trip/) of the polymer composites decreased with temperature; the ratio of Ι$\sub$trip/ for the ionomer/LDPE/CB composite decreased to a greater extent than that of the LDPE/CB composite. The average temperature coefficient of resistance (${\alpha}$$\sub$T/) for the polymer composites increased in the low-temperature region.

쐐기풀(Urtica Dioica L.추출물의 염색성 연구) (A Study on the Dyeability of Urtica Dioica L. Extract)

  • 김소진;김리원
    • 패션비즈니스
    • /
    • 제20권4호
    • /
    • pp.128-140
    • /
    • 2016
  • In this study, dyeability of Urtica Dioica L. extract, which is relatively less studied, was measured. The extract of this plant was used to dye cellulose and protein fiber to check its usage as a natural green dye. Three different methods were used to produce extract. Dried Urtica Dioica L. was extracted with 100% ethanol, 50% ethanol with 50% distilled water and 100% distilled water. Then dyeing solution was obtained by blending with distilled water at 1-to-1 ratio. The maximum dyeability was obtained when 100% ethanol extract of dried Urtica Dioica L. used to dye fabrics at 60 degrees celsius for 60 minutes without mordant treatment. Cotton, rayon, wool and silk were dyed and dyeability for each fiber was measured for color difference value then compared to its control. The results show that dyeability of rayon and dyeability of wool are stronger, and that when color position for each mordant is measured, color difference is most diverse on cotton with pre-mordant treatment. Color fastness to wash, perspiration and rubbing crockmeter were superb, but color fastness to light was low, therefore, additional study on this is needed to improve. Urtica Dioica L. is now expected to be used practically as green color dye as well as medicinally and edible.

반응표면 분석방법에 의한 궐련지 제조 주요인자의 최적화 연구 (Optimization of some major factors in cigarette paper manufacturing using response surface analysis)

  • 김영호;이근회
    • 한국연초학회지
    • /
    • 제11권2호
    • /
    • pp.211-224
    • /
    • 1989
  • 10. Three major factors, freeness, filler and blend ratio that exercised considerable influence on physical properties of cigarette papers were chosen for the sake of their optimization at this experiment. An optimization of those above factors in paper manufacturing was investigated using response surface analysis. Optimum beating degree for Kenaf, Flax and NBKP showed around 72。SR, 68。SR and 85 SR, respectively, in considering of five quality index such as porosity, tensile strength, stretch, whiteness and opacity. The best blending ration of reciprocal pulps treated under optimum beating degree were diversified and combination scope of the bast fiber (Kenaf, Flax) to the NBKP was range from 30% to 65% in case of the Kenaf, from 25 to 40% in Flax at the same receipe. The optimum range of calcium carbonate content revealed 25%~30% in Kenaf mixed NBKP and 24%~31% in Flax mixed NBKP.

  • PDF

Multivariate Analysis among Leaf/Smoke Components and Sensory Properties about Tobacco Leaves Blending Ratio

  • Lee Seung-Yong;Lee Whan-Woo;Lee Kyung-Ku;Kim Young-Hoh
    • 한국연초학회지
    • /
    • 제27권1호
    • /
    • pp.141-152
    • /
    • 2005
  • This study focused on the relationships among leaf and smoke components and sensory properties following tobacco leaf blending. A completely randomized experimental design was used to evaluate components of leaf and smoke and sensory properties for sample cigarettes with four mixtures of flue cured and burley tobacco (40:60, 60:40, 80:20 and 100:0). Eleven leaf components, six smoke components, and eight sensory properties of smoking taste were analyzed. A sensory evaluation method known as quantitative descriptive analysis was used to evaluate perceptual strength on a fifteen score scale. Raw data from ten trained panelists were obtained and statistically analyzed. Based on the MANOVA, clustering analysis, correlation matrix and partial least square (PLS) method were applied to find out which smoke component most affected sensory properties. The PLS method was used to remove the influence between explanatory variables in the leaf, smoke components derived from the results. High correlations (p<0.0l) were found among ten specific leaf and smoke components and sensory attributes. Total nitrogen, ammonia, total volatile base, and nitrate in the leaf were significantly correlated (p<0.05) with impact, bitterness, tobacco taste, irritation, smoke volume, and smoke pungency. From the results of PLS analysis, influence variables are used to explain about the correlation. In terms of bitterness, with only two explanatory variables, Leaf $NO_3$ and Leaf crude fiber were enough for guessing their correlation. In the distance weighted least square fitting analysis, carbon monoxide highly influenced bitterness, hay like taste, and smoke volume.