A Kinetic Study of Thermal Degradations of Chitosan/Polycaprolactam Blends

  • Liao, Shen-Kun (Department of Fiber and Composite Materials, Feng Chia University) ;
  • Hung, Chi-Chih (Department of Fiber and Composite Materials, Feng Chia University) ;
  • Lim, Ming-Fung (Department of Business &)
  • Published : 2004.10.01

Abstract

We have used FT-IR spectra to explain the effects of hydrogen bonding between chitosan and polycaprolactam (PA6). A dynamic mechanical analysis study suggested that the optimum chitosan and PA6 miscibility under the conditions of this experiment were obtained at a blending ratio of 40:60. We studied the thermal degradation of chitosan blended with PA6 (chitosan/PA6) by thermogravimetric analysis and kinetic analysis (by the Ozawa method). Dry chitosan and PA6 exhibited a single stage of thermal degradation and chitosan/PA6 blends having> 20 wt% PA6 exhibited at least two stages of degradation. In chitosan/PA6 blends, chitosan underwent the first stage of thermal degradation; the second stage proceeded at a temperature lower than that of PA6, because the decomposition product of chitosan accelerated the degradation of PA6. The activation energies of the blends were between 130 and 165 kJ/mol, which are also lower than that of PA6.

Keywords

References

  1. J. Appl. Polym. Sci. v.45 M. Hasegawa;A. Isogai;F. Onabe;M. Usuda;R. Atalla https://doi.org/10.1002/app.1992.070451101
  2. Biomedical Polymers S. W. Shalaby
  3. Biochim. Biophys. Acta. v.5 S. Bartnicki-Garcia;W. J. Nickerson
  4. Makromol. Chem. v.194 S. Aiba https://doi.org/10.1002/macp.1993.021940105
  5. Natural Chelating Polymers R. A. A. Muzzarelli
  6. Proceeding of First Internation Conference on Chitin/Chitosan, MIT Sea Grant Report MITSG 78-7 R. A. A. Muzzarelli;E. R. Pariser
  7. Food Product Development v.11 W. A. Bough
  8. Rev. Macromol. Chem. Phys. v.C34 T. D. Rathke;A. M. Hudson
  9. Food Packag. v.2 J. Hosokawa
  10. Biomaterials v.10 R. Muzzarelli;G. Bjagini;C. Rizzoli https://doi.org/10.1016/0142-9612(89)90113-0
  11. Koubunshi Ronbunshu v.40 M. Miya;S. Yoshikawa;R. Iwamoto;S. Mima https://doi.org/10.1295/koron.40.645
  12. J. Polym. Sci.: Polym. Phys. Ed. v.19 R. J. Samuels https://doi.org/10.1002/pol.1981.180190706
  13. J. Appl. Polym. Sci. v.59 J. A. Ratto;C. C. Chen;R. B. Blumstein https://doi.org/10.1002/(SICI)1097-4628(19960228)59:9<1451::AID-APP13>3.0.CO;2-1
  14. Ind. Eng. Chem. Res. v.30 J. Hosokawa;M. Nishiyama;K. Yoshihara;T. Kubo;A. Terabe https://doi.org/10.1021/ie00052a025
  15. Polym. Degrad. Stab. v.74 I. Vieira;V. L. S. Severgnini;D. J. Mazerz;M. S. Soldi;E. A. Pinheiro https://doi.org/10.1016/S0141-3910(01)00148-3
  16. Polymer v.39 C. Peniche;E. Carlos;JS. Roman https://doi.org/10.1016/S0032-3861(98)00059-7
  17. Polym. Degrad. Stab. v.60 F. A. A. Tirkistani https://doi.org/10.1016/S0141-3910(97)00020-7
  18. Polym. Degrad. Stab. v.52 K. Sreenivasan https://doi.org/10.1016/0141-3910(95)00220-0
  19. Macromol. Chem. Phys. v.200 T. Ikejima;K. Yogi;Y. Inonu https://doi.org/10.1002/(SICI)1521-3935(19990201)200:2<413::AID-MACP413>3.0.CO;2-Q
  20. Polymer v.41 X. Qu;A. Wirsen;A. Albertsson https://doi.org/10.1016/S0032-3861(99)00704-1
  21. Polym. Degrad. Stab. v.78 P. Gijsman;R. Steenbakkers;C. Furst;J. Kersjes https://doi.org/10.1016/S0141-3910(02)00136-2
  22. Polym. Degrad. Stab. v.68 J. Gonzalez;C. Albano;R. Sciamanna;M. Ichazo;C. Rosales;J. Martinez;M. Candal https://doi.org/10.1016/S0141-3910(99)00160-3
  23. Bull. Chem. Soc. Japan v.38 T. Ozawa https://doi.org/10.1246/bcsj.38.1881
  24. J. Thermal. Anal. v.7 T. Ozawa https://doi.org/10.1007/BF01912021
  25. J. Appl. Polym. Sci. v.78 V. Gonzalez;C. Guerrero;U. Ortiz https://doi.org/10.1002/1097-4628(20001024)78:4<850::AID-APP190>3.0.CO;2-N
  26. J. Appl. Polym. Sci. v.86 G. Cardenenas;J. C. Paredes;G. Cabrea;P. Casals https://doi.org/10.1002/app.11252
  27. Polym. Degrad. Stab. v.39 P. C. Carlos;A. M. Waldo;J. S. Roman https://doi.org/10.1016/0141-3910(93)90120-8
  28. J. Polym. Part B: Polym. Phys. Ed. v.34 E. S. Kim;S. H. Kim;Y. M. Lee https://doi.org/10.1002/(SICI)1099-0488(199610)34:14<2367::AID-POLB6>3.0.CO;2-T
  29. Polym. Adv. Technol. v.9 N. M. Langer;C. A. Wilkie https://doi.org/10.1002/(SICI)1099-1581(199805)9:5<290::AID-PAT756>3.0.CO;2-P
  30. J. Appl. Polym. Sci. v.81 D. A. Costa;C. M. F. Oilveira https://doi.org/10.1002/app.1697
  31. J. Polym. Sci.:Polym. Phys. Ed. v.19 H. W. Starkweather,Jr.;R. John;E. I. Barkley https://doi.org/10.1002/pol.1981.180190804
  32. J. Thermal Anal. v.21 I. Garcia;C. Peniche;J. M. Nieto
  33. Thermochimica Acta v.337 H. Bockhorn;A. Horung;U. Horung;J. Weichmann https://doi.org/10.1016/S0040-6031(99)00151-3
  34. Macromol. Mater. Eng. v.287 Z. Czegeny;E. Jakab;M. Blazso https://doi.org/10.1002/1439-2054(20020401)287:4<277::AID-MAME277>3.0.CO;2-#
  35. Polym. Degrad. Stab. v.75 K. Fukatsu https://doi.org/10.1016/S0141-3910(01)00251-8
  36. J. Appl. Polym. Sci. v.85 M. G. Lu;J. Y. Lee;M. J. Shim;S. W. Kim https://doi.org/10.1002/app.10882
  37. J. Appl. Polym. Sci. v.75 M. G. Lu;M. J. Shim;S. W. Kim https://doi.org/10.1002/(SICI)1097-4628(20000321)75:12<1514::AID-APP10>3.0.CO;2-E