• Title/Summary/Keyword: Fiber Pull-Out

Search Result 137, Processing Time 0.023 seconds

Direct Tensile Properties of Fiber-Reinforced Cement Based Composites according to the Length and Volume Fraction of Amorphous Metallic Fiber (비정질 강섬유의 길이 및 혼입률에 따른 섬유보강 시멘트복합체의 직접인장특성)

  • Kim, Hong-Seop;Kim, Gyu-Yong;Lee, Sang-Kyu;Choe, Gyeong-Cheol;Nam, Jeong-Soo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.19 no.3
    • /
    • pp.201-207
    • /
    • 2019
  • In this study, the direct tensile properties of amorphous metallic fiber-reinforced cement based composites according to the strain was evaluated. A thin plate-shape amorphous metallic fiber with 15mm and 30mm in length was used. And fiber-reinforced cement based composites were prepared with contents of 1.0, 1.5, 2.0%. The direct tensile test was conducted under the conditions of $10^{-6}/s(static)$ and $10^1/s(dynamic)$ strain rate. As a results, amorphous metallic fiber with a length of 15mm was observed in pull-out behavior from the cement matrix because of the short fiber length and large portion of mixed fiber. On the other hand, amorphous metallic fiber with a length of 30mm were not pulled out from matrix because the bonding force between the fiber and matrix was large due to rough surface and large specific surface area. However, fracture occurred because thin plate shape fibers were vulnerable to shear force. Tensile strength, strain capacity and toughness were improved due to the increase in the fiber length. The dynamic increase factor of L15 was larger that of L30 because the bonding performance of the fiber-matrix interface is significantly affected by the strain rate.

Evaluation of Residual Bond Stress between Carbon-fiber Reinforced Polymer and Steel Rebar Using Ultra-High-Performance-Concrete after Elevated Temperature (초고강도 콘크리트를 활용한 고온가열 이후의 탄소 보강근과 철근의 잔류 부착성능 평가)

  • Yoo, Sun-Jae;Lee, Ho-Jin;Yuan, Tian-Feng;Yoon, Young-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.6
    • /
    • pp.169-176
    • /
    • 2021
  • In this study, pull-out tests were conducted at room temperature, 150 ℃ and 250 ℃ to evaluate the residual bond strength of carbon fiber reinforcement polymer, CFRP after elevated temperature and deformed steel rebar of D10 and D13 were also evaluated after the high temperature heating for comparison. As a result of the experiment, the bond strength of the CFRP after 150 ℃ and 250 ℃ decreased by 9.94 % and 41 %, respectively. On the other hand, after thermal heating, both the steel rebar of D10 and D13 had a lower rate of reduction in bond strength than that of the CFRP. Also slip at the maximum bond strength also decreased after the heating for both the CFRP and the rebars. Through it, the correlation between the bond strength and the slip reduction due to thermal heating was confirmed and bond slip models were presented. Finally the experimental result was evaluated as relative bond strength to identify the residual bond performance of the CFRP and the rebar after the heating was confirmed by comparing with the existing test result of the bond strength after elevated temperature.

Bond Characteristics and Splitting Bond Stress on Steel Fiber Reinforced Reactive Powder Concrete (강섬유로 보강된 반응성 분체 콘크리트의 부착특성과 쪼갬인장강도)

  • Choi, Hyun-Ki;Bae, Baek-Il;Choi, Chang-Sik
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.5
    • /
    • pp.651-660
    • /
    • 2014
  • Structural members using ultra high strength concrete which usually used with steel fiber is designed with guidelines based on several investigation of SF-RPC(steel fiber reinforced reactive powder concrete). However, there are not clear design method yet. Especially, SF-RPC member should be casted with steam(90 degree delicious) and members with SF-RPC usually used with precast members. Although the most important design parameter is development method between SF-RPC and steel reinforcement(rebar), there are no clear design method in the SF-RPC member design guidelines. There are many controversial problems on safety and economy. Therefore, in order to make design more optimum safe design, in this study, we investigated bond stress between steel rebar and SF-RPC according to test. Test results were compared with previously suggested analysis method. Test was carried out with direct pull out test using variables of compressive strength of concrete, concrete cover and inclusion ratio of steel fiber. According to test results, bond stress between steel rebar and SF-RPC increased with increase of compressive strength of concrete and concrete cover. Increasing rate of bond stress were decrease with increase of compressive strength of SF-RPC and concrete cover significantly. 1% volume fraction inclusion of steel fiber increase the bond stress between steel rebar and SF-RPC with two times but 2% volume fraction cannot affect the bond stress significantly. There are no exact or empirical equations for evaluation of SF-RPC bond stress. In order to make safe bond design of SF-RPC precast members, previously suggested analysis method for bond stress by Tepfers were evaluated. This method have shown good agreement with test results, especially for steel fiber reinforced RPC.

AN EXPERIMENTAL STUDY ON REINFORCEMENT OF ACRYLIC RESIN DENTURE BASE (아크릴릭 레진 의치상 강화에 관한 실험적 연구)

  • Kim Hyung-Sik;Kim Chang-Whe;Kim Young-Soo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.32 no.3
    • /
    • pp.411-430
    • /
    • 1994
  • The denture may be fractured accidentally by an impact while outside the mouth, or may be cracked or broken while in service in the mouth. The latter is generally a fatigue failure caused by repeated flexure over a period of time. This investigation compared the flexural fatigue resistance, the impact force and the transverse strength of two denture base materials with and without the grid strengthener, the T300, the T800 and the Kevlar fiber to evaluate the fracture resistance. The distribution and behavior of fibers across fracture lines were examined by Hi-Scope Compact Microvision System. Through analyses of the data from this study, the following conclusions were obtained. 1. The flexural fatigue resistance, impact strength and transverse strength of high impact strength resin were higher than those of conventional heat polymerizing resin, but statistically there was no significant difference(p>0.05). 2. All specimens with and without the grid strengthener did not show significant differences in the flexural fatigue, the impact and the transverse strength test(p>0.05). 3. All specimens reinforced with the T300, the T800 and the Kevlar fiber showed significant increase of the fatigue resistance and the impact force(p<0.05). 4. All specimens reinforced with the T800 and the Kevlar fiber showed significant increase of the transverse strength(p<0.05). 5. All specimens reinforced with the T300, the T800 and the Kevlar fiber exhibited greenstick fractures. The fibers tended to remain enveloped in the resin, resisting pull-out.

  • PDF

A Study on Methodology for Improvement of Bond of FRP reinforcement to Concrete (초단유리섬유(milled glass fibers)와 에폭시 혼합물을 이용한 FRP 보강근 표면성형기법 연구)

  • Moon, Do-Young;Sim, Jongsung;Oh, Hongseob
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4A
    • /
    • pp.775-785
    • /
    • 2006
  • This study focused on the development of surface deformations of GFRP rebars with a better bond characteristic for reinforcing concrete, and simultaneously, of GFRP rebars with more simple and economic production process. This research paper describes a development and bond performance of GFRP rebar with molded deformations, which is composed of polymer resin and milled glass fiber. To determine proper mix ration of milled fibers, material test of hardened epoxy and pullout tests of GFRP rebar with various mix ratio were conducted. The test results indicate that the new strategy of using a mixture of epoxy resin and milled fiber could be successfully applied to a surface structure of GFRP rebar to enhance bond with concrete. The bearing resistance of the ribs was further enhanced by the milled fibers at mechanical and environmental loading state.

The suture method using ribbon shaped knot in pediatric facial lacerations (소아 안면 열상 시 리본 모양 매듭법을 이용한 봉합법)

  • Sung, Hyoung Woo;Kim, Jin Woo;Shin, Han Kyung;Jung, Jae Hak;Kim, Young Hwan;Sun, Hook
    • Archives of Plastic Surgery
    • /
    • v.36 no.1
    • /
    • pp.122-125
    • /
    • 2009
  • Purpose: Stitching out in facial simple laceration on children, we use No.11 blade. But the procedure is technically demanded to take care of the uncooperative pediatric patient. When we suture a laceration on the pediatric patient, we apply this method using ribbon shaped knot. On stitching out, We pull one the edge of a stitching fiber easily without injury about normal tissue. Methods: We studied 54 pediatric patients who have facial lacerations for children under six years old, from May, 2006 to December, 2007 in Plastic Surgery department, emergency room. Among them 35 were male, 19 were female and age average was 3.9. Results: For following up dressing, ribbon shaped knot did not get loose. After stitching out in facial laceration on children, Major complication of infection, hematoma, dehiscence was not found. Conclusion: The advantage of this operation method using ribbon shaped knot when we Stitch out the fiber on the incorporative pediatric patients, is easy to perform and to reduce the stitching time, without sedation.

Experimental Study on the Shear Behavior of Reinforced Hooked-Steel-Fiver Concrete Beams (훅트강섬유보강 철근콘크리트보의 전단거동에 대한 실험적 연구)

  • 심종성;이차돈;김규선;오홍섭
    • Magazine of the Korea Concrete Institute
    • /
    • v.7 no.5
    • /
    • pp.179-188
    • /
    • 1995
  • SFRC overcomes brittleness of concrete and has increases strength due to the action of confmement, crack arrestmg mechan~sm and pull out resistances of steel f~bers ~ n s ~ d e the concrete. These lead also to the increased strength and ductility under the shear stress. It has been reported that the secondary remforcement effect of steel fibers IS more pronounced In shear than flexure. Addition of hooked stee!, fibers into the cementitious materials enhanced shear resistance and consequently improves structural behavior and shear strength of Reinforced Hooked-Steel-Fiber Concrete Ream(RHSFCI3) under the shear forces. Experimental observations were made on the main parameters effecting structural behavior of RHSFCB in this study. The volume fractions of fibers, shear span to depth ratios, and spaclngs of stlrrups were taken into account as the mam parameters. Some eyuatlons reported in the literatures, regardmg the predict~ons of the shear strength of RHSFCB have been evaluated stdtlst~cdlly based on the tot a1 number of 95 test results on RHSFCB faded In shear on shear flexu~al mode.

Bond Strength of Super-CFRP Rod in Concrete

  • Seo, Sung-Tag
    • International Journal of Concrete Structures and Materials
    • /
    • v.18 no.1E
    • /
    • pp.29-34
    • /
    • 2006
  • Elastic modulus, tensile and bond capacities are important factors for developing an effective reinforcing action of a flexural member as a reinforcing material for concrete structures. Reinforcement must have enough bond capacity to prevent the relative slip between concrete and reinforcement. This paper presents an experimental study to clarify the bond capacity of prestressed carbon fiber reinforced polymer(CFRP) rod manufactured by an automatic assembly robot. The bond characteristics of CFRP rods with different pitch of helical wrapping were analyzed experimentally. As the result, all types of CFRP rods show a high initial stiffness and good ductility. The mechanical properties of helical wrapping of the CFRP rods have an important effect on the bond of these rods to concrete after the bond stress reached the yield point. The stress-slip relationship analyzed from the pull-out test of embedded cables within concrete was linear up to maximum bond capacity. The deformation within the range of maximum force seems very low and was reached after approximately 1 mm. The average bond capacity of CF20, CF30 and CF40 was about 12.06 MPa, 12.68 MPa and 12.30 MPa, respectively. It was found that helical wrapping was sufficient to yield bond strengths comparable to that of steel bars.

Fracture Toughness Improvement of Graphite/Epoxy Composite by Intermittent Interlaminar Bonding (간헐적인 층간접착 을 이용한 Graphite/Epoxy 복합재료 의 파괴인성 개선)

  • 임승규;홍창선
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.8 no.5
    • /
    • pp.425-434
    • /
    • 1984
  • The concept of intermittent interlaminar bonding is investigated as a means of improving the fracture toughness of cross-ply Gr/Ep composites without significant loss of tensile strength and modulus. The concept of linear elastic fracture mechanics(LEFM)is used to study the effects of strong bonded area and bonding composites. The experimental results indicate that the fracture toughness and notch strength of intermittent interlaminar bonded composities are improved and the tensile strength only decreased by 3-8% in comparison to those of the fully bonded composites. Damage zones around the crack tip are detected by the modified X-Ray non-destructive testing technique and the fractography. The improvement of toughness is explained based on the damage zones. The mechanisms of damage zone are shown to be caused by subcrack along the fiber on the 0.deg. ply, matrix cracking along the fiber on the 90.deg. ply, interlaminar delamination, and ply pull-out of the 0.deg. ply.

Mechanical Properties of Cf/SiC Composite Using a Combined Process of Chemical Vapor Infiltration and Precursor Infiltration Pyrolysis

  • Kim, Kyung-Mi;Hahn, Yoonsoo;Lee, Sung-Min;Choi, Kyoon;Lee, Jong-Heun
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.4
    • /
    • pp.392-399
    • /
    • 2018
  • $C_f/SiC$ composites were prepared via a process combining chemical vapor infiltration (CVI) and precursor infiltration pyrolysis (PIP), wherein silicon carbide matrices were infiltrated into 2.5D carbon preforms. The obtained composites exhibited porosities of 20 vol % and achieved strengths of 244 MPa in air at room temperature and 423 MPa at $1300^{\circ}C$ under an Ar atmosphere. Carbon fiber pull-out was rarely observed in the fractured surfaces, although intermediate layers of pyrolytic carbon of 150 nm thickness were deposited between the fiber and matrix. Fatigue fracture was observed after 1380 cycles under 45 MPa stress at $1000^{\circ}C$. The fractured samples were analyzed by transmission electron microscopy to observe the distributed phases.