• Title/Summary/Keyword: Fiber Material Properties

Search Result 1,098, Processing Time 0.027 seconds

Manufacture of Hanji Using Tencel Fiber (텐셀섬유를 활용한 한지의 제조)

  • 민춘기;조중연;신준섭;류운형
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.33 no.4
    • /
    • pp.35-41
    • /
    • 2001
  • A newly developed functional fiber for textile, Tencel, which is known to have some advantages over wood fiber such as fibrillation, absorbency and so on, was examined to see the possibility of a raw material for hanji. Hanji was manufactured by the conventional handmade method using Tencel of three different fiber lengths with three different levels of mixing ratio of Tencel and paper mullberry fiber, and their physical and calligraphic properties were evaluated and compared with one another. It was needed to develop more efficient beating methods than conventional one such as valley beating for Tencel to be used effectively as a raw material for hanji. It was found out by image analysis that the calligraphic properties of hanji could be improved by mixing of 10 to 20% of Tencel of relatively short-length fiber with paper mulberry.

  • PDF

Physical Properties of Glass Fiber Reinforced Nylon 6,6 and lonomer Blends (Glass Fiber로 강화된 Nylon 6,6 / Ionomer 블렌드의 물리적 특성)

  • 박광석;서광석
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.536-539
    • /
    • 1999
  • Physical properties of glass fiber-reinforced nylon 6,6 and ionomer blends were investigated in variation of ionomer and glass fiber content. With the increase of ionomer content, tensile strength, impact strength and flexural strength decreased, whereas increasing glass fiber content, these properties were improves. Both permittivity and tan $\delta$ remain unchanged. Space charge distribution was investigated by PEA (Pulsed electroacoustic) method. Heterocharge was found in nylon 6,6 and 히ass fiber composites, whereas composites, whereas when ionomer is blended.

  • PDF

Mechanical Properties of Steel Fiber Reinforced Polymer Concrete (강섬유 보강 폴리머 콘크리트의 역학적 특성)

  • 김기락;연규석;이윤수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10a
    • /
    • pp.336-341
    • /
    • 1998
  • Steel fiber reinforced concrete(SFRC) is a composite material possessing many physical and mechanical properties which are distinct from unreinforced concrete. The use of steel fiber reinforcement to improve the flexural and tensile strengths, extensibility and toughness of ordinary cement concrete is well known at present, but reinforcement of polymer concrete with steel fibers has been hardly reported untill now. The objective of this study was to improve the properties of the polymer concrete by addition of steel fibers. In this paper steel fiber reinforced polymer concrete is prepared with various steel fiber contents and aspect ratio($\ell$ /d), and their mechanical properties were investigated experimentally.

  • PDF

Microstructure, Thermal Properties and Rheological Behavior of PLA/PCL Blends for Melt-blown Nonwovens (멜트블론 부직포 제조를 위한 PLA/PCL 블렌드의 미세구조, 열적특성, 및 유변학적 성질)

  • Sun, Hui;Yu, Bin;Han, Jan;Kong, Jinjin;Meng, Lingrui;Zhu, Feichao
    • Polymer(Korea)
    • /
    • v.38 no.4
    • /
    • pp.477-483
    • /
    • 2014
  • Poly(lactic acid) (PLA) and poly(${\varepsilon}$-caprolactone) (PCL) blends with various components for melt-blown non-wovens were prepared by a twin-screw extruder. Tributyl citrate (TBC) was added in order to improve the miscibility between PLA and PCL. The results showed that small circular particles of PCL were dispersed in PLA matrix uniformly. The addition of PCL had the heterogeneous nucleation effect on the crystallization of PLA and decreased thermal stability of PLA. The flow of pure PLA and blends approached to Newtonian liquid at a low shear rate and expressed more obvious viscoelasticity at a high shear rate.

Investigation of Material Properties of the Steel Fiber Reinforced Concrete (강섬유 보강콘크리트의 재료적 성상에 관한 고찰)

  • 이현호;권영호;허무원;정현석
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.733-736
    • /
    • 2002
  • As composite materials, the addition of steel fiber in concrete significantly improves the engineering properties of structural members. The purpose of this study is to define the strengthening effect of steel fiber in a point of material usage. From tile material test. compression strength, tensile splitting strength and flexural strength were evaluated by steel fiber volume fraction ($V_f$) and aspect ratio (AR) of steel fiber. In case of AR 67, $V_f$ 2.0% could be achieved maximum steel fiber strengthening effect. And the AR 80 case, $V_f$ 1.0% could be achieved maximum effect than the effect of $V_f$ 1.5%.

  • PDF

Modeling and Application of Active Fiber Composites (능동 화이버 복합재의 모델링 및 적용 연구)

  • Ha, Seong-Gyu;Lee, Yeong-U;Kim, Yeong-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.8
    • /
    • pp.1261-1268
    • /
    • 2001
  • Effective material properties of active fiber composites with interdigitated electrodes are derived as a function of the fiber volume fraction. For the purpose of applying the rule of mixture, three unit cell models are introduced; each for the deformation and stress continuities in the out of plane and in-plane directions, and the continuity of the electrical displacement in the longitudinal direction. Derived effective material properties are compared with the results by the finite element method; good agreements are observed between them. As an application, the electromechanical behavior of the angle ply laminates with the active fiber layers bonded on the top and bottom surfaces are investigated; the angle of piezoelectric fiber to maximize the twisting curvature is obtained using the present model.

Mechanical Properties of Carbon Fiber Reinforced Porous Concrete for Planting

  • Park Seung-Bum;Kim Jeong-Hwan
    • KCI Concrete Journal
    • /
    • v.14 no.4
    • /
    • pp.161-169
    • /
    • 2002
  • The mechanical properties of fiber reinforced porous concrete for use as a planting material were investigated in this study. Changes in physical and mechanical properties, subsequent to the addition of carbon fiber and silica fume, were studied. The effects of recycled aggregate were also evaluated. The applicability as planting work concrete material was also assessed. The results showed that there were no remarkable changes in the void and strength characteristics following the increase in proportion of recycled aggregate. Also, the mixture with 10% silica fume was found to be the most effective for strength enforcement. The highest flexural strength was obtained when the carbon fiber was added with $3\%$. It was also noticed that PAN-derived carbon fiber was superior to Pitch-derived ones in view of strength. The evaluation of its usage for vegetation showed that the growth of plants was directly affected by the existence of covering soil, in case of having the similar size of aggregate and void.

  • PDF

Characteristics of Sputtering Carbon Films for the Improvement of Physical Properties in Carbon Fiber (탄소섬유 물리적 특성 향상을 위한 스퍼터링 탄소박막의 특성에 대한 연구)

  • Park, Chulmin;Park, Yong Seob;Kim, Jae-Moon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.11
    • /
    • pp.694-697
    • /
    • 2015
  • We investigated the characterizations of carbon films fabricated by dual magnetron sputtering under various RF powers for the improvement of physical properties in carbon fiber (CF). All sputtered carbon films exhibited amorphous structure, regardless of RF powers, resulting in uniform and smooth surfaces. The hardness and elastic modulus are increased with the increase of RF power, and the adhesion and friction properties of carbon films were improved with the increase of RF power. In the results, The increase of RF power in the sputtering method improved tribological properties of the carbon films, and these attributes can be expected to improve the physical properties of the carbon fiber reinforcement plastics.

Effect of Oxygen Plasma Treatment on the Surface and Tensile Properties of Stainless Steel Fibers (산소 플라즈마 처리가 스테인레스 스틸 섬유의 표면 및 인장특성에 미치는 영향)

  • Kwon, MiYeon;Lim, Dae Young;Lee, Seung Goo
    • Textile Coloration and Finishing
    • /
    • v.34 no.2
    • /
    • pp.102-108
    • /
    • 2022
  • The physicochemical properties of stainless steel fibers which were modified by oxygen plasma treatment were analyzed through microscopy and XPS analysis. The wettability of the surface of the stainless steel fiber was observed by measuring water contact angle to find out the effect of the plasma treatment time on the surface characteristics of the stainless steel fiber. In addition, in order to understand the effect of oxygen plasma treatment on the deterioration of the stainless steel fiber properties, the physical properties due to plasma treatment was investigated by measuring the weight reduction, tensile strength, elongation, tensile modulus of the stainless steel fibers according to the treatment time. As a result, the stainless steel fiber surface was etched by the oxygen plasma and the surface became more wettable by the introduction of hydrophilic functional groups. However the physical properties of the stainless steel fiber were not significantly deteriorated even if the surface of the stainless steel fiber made hydrophilic.

Flexural Characteristics of Coir Fiber Reinforced Cementitious Composites

  • Li Zhi-Jian;Wang Li-Jing;Wang Xungai
    • Fibers and Polymers
    • /
    • v.7 no.3
    • /
    • pp.286-294
    • /
    • 2006
  • This study has examined the flexural properties of natural and chemically modified coir fiber reinforced cementitious composites (CFRCC). Coir fibers of two different average lengths were used, and the longer coir fibers were also treated with a 1% NaOH solution for comparison. The fibers were combined with cementitious materials and chemical agents (dispersant, defoamer or wetting agent) to form CFRCC. The flexural properties of the composites, including elastic stress, flexural strength, toughness and toughness index, were measured. The effects of fiber treatments, addition of chemical agents and accelerated ageing of composites on the composites' flexural properties were examined. The results showed that the CFRCC samples were 5-12 % lighter than the conventional mortar, and that the addition of coir fibers improved the flexural strength of the CFRCC materials. Toughness and toughness index, which were associated with the work of fracture, were increased more than ten times. For the alkalized long coir fiber composites, a higher immediate and long-term toughness index was achieved. SEM microstructure images revealed improved physicochemical bonding in the treated CFRCC.