• Title/Summary/Keyword: Fiber Fractions

Search Result 204, Processing Time 0.022 seconds

A Study on Analyzing of Carbonized Fibers in Excavated Cloths (출토복식에 나타난 탄화직물의 분석적 연구)

  • Baek, Young-Mee;Kwon, Young-Suk
    • 한국문화재보존과학회:학술대회논문집
    • /
    • 2004.10a
    • /
    • pp.109-114
    • /
    • 2004
  • The purpose of this study lies in analyzing the characteristics of the carbonized textile fabrics and to know the carbonizing mechanism. Samples were Jiyo excavated from the grave of Mrs. Hansan Lee as the wife of Jinju Kang at Daeduk-gu, Daejon, and black fragements assumed as of the outside material of cotton skirt and black dusts collected out of Jikryung for official dress. The composition and status of the fiber were clarified by means of Microscopic FT-IR and both cross sectioanl and side parts of the fiber were observed using the technique of scanning electron microscopy(SEM). Finally EDS analysis was carried out to qualitatively analyze inorganic ingredients contained in the carbonized fiber. As a result of FT-IR measurement, characteristic peak was very strong around $1625cm^{-1}$ and could be found even between 2500 and $2300cm^{-1}$ because of a high-molecule pigmental substance, melanine. When SEM photography was applied to the fractions, the tissues were identified as silk fiborine through the observation of their side and cross sectional parts. SEM-EDS measurement indicated that both the cotton skirt and Jikryung for official dress contained a high proportion of inorganic substances such as Si, Ca suggesting the existence of silicide and calcium carbonate.

  • PDF

New Concept of Stiffness Improvement in Paper and Board

  • Seo, Yung B.
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.34 no.5
    • /
    • pp.63-69
    • /
    • 2002
  • A new concept of stock preparation for the increase of bending stiffness in paper and board was proposed. The "stiff" fibers, which were mechanically not treated or treated slightly to remove fiber curls, were combined with extensively refined fibers (ERF) to produce higher stiffness papers than those where the whole fibers were refined. The combination of "stiff" fibers and extensively refined fibers produced higher stiffness at the same tensile strength than the control furnish, in which all the fibers are refined together. In this concept, the fibers from recycled papers could be as much useful as the virgin fibers as long as they are stiff enough or they can produce highly bondable fiber fractions by extensive refining. Use of the concept in real paper mill needs considerations such as increase of refining energy, slower drainage, and added drying burden, but savings of wood fibers, utilization of more recycled fibers, and increase of physical properties may offset the negative concerns. The success of this concept implementation in mills, therefore, depends on the wood fiber market around the mills and the proper decision making for the papermakers about how to apply this concept. apply this concept.

Influence of Varying Dry Matter and Molasses Levels on Berseem and Lucerne Silage Characteristics and Their In situ Digestion Kinetics in Nili Buffalo Bulls

  • Touqir, N.A.;Khan, M. Ajmal;Sarwar, M.;Nisa, M.;Lee, W.S.;Lee, H.J.;Kim, H.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.6
    • /
    • pp.887-893
    • /
    • 2007
  • Influences of forage DM and addition of cane molasses on silage characteristics of berseem (Trifolium alexandrium) and lucerne (Medicago sativa) and their ruminal digestion kinetics in Nili buffaloes were studied. Berseem and lucerne fodders (at one tenth bloom) were ensiled with wheat straw in laboratory silos to achieve 20, 30, 40% forage DM and without wheat straw (control); each forage DM level was supplemented with 2, 4 and 6% of cane molasses at ensiling. The pH and lactic acid contents of berseem and lucerne silages were affected by both forage DM and addition of molasses. Dry matter, CP and true protein (TP) of berseem and lucerne silages were affected by forage DM at ensiling but were not affected by the addition of cane molasses. Higher DM, CP and TP losses were observed when berseem and lucerne fodders were ensiled either without wheat straw or with wheat straw to achieve 20% and 40% forage DM at ensiling compared with 30% DM at ensiling. Fiber fractions (NDF, ADF, hemicellulose and cellulose) of berseem silage and lucerne silage were significantly increased with increasing forage DM at ensiling. Addition of cane molasses did not affect the DM, CP, TP and fiber fractions of both berseem and lucerne silages. Berseem and lucerne ensiled at 30% DM with 2% cane molasses were screened for comparative ruminal digestion kinetics with their respective fodders. Addition of wheat straw to berseem or lucerne fodder at ensiling depressed DM and NDF ruminal degradability. However, ruminal lag time, rate of degradation and extent of digestion of silages were similar to their respective fodders. In conclusion, berseem and lucerne could be ensiled with wheat straw to increase their DM to 30% along with 2% molasses for buffaloes.

Mutation of Cellulose Synthase Gene Improves the Nutritive Value of Rice Straw

  • Su, Yanjing;Zhao, Guoqi;Wei, Zhenwu;Yan, Changjie;Liu, Sujiao
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.6
    • /
    • pp.800-805
    • /
    • 2012
  • Rice straw is an important roughage resource for ruminants in many rice-producing countries. In this study, a rice brittle mutant (BM, mutation in OsCesA4, encoding cellulose synthase) and its wild type (WT) were employed to investigate the effects of a cellulose synthase gene mutation on rice straw morphological fractions, chemical composition, stem histological structure and in situ digestibility. The morphological fractions investigation showed that BM had a higher leaf sheath proportion (43.70% vs 38.21%, p<0.01) and a lower leaf blade proportion (25.21% vs 32.14%, p<0.01) than WT. Chemical composition analysis showed that BM rice straw was significantly (p<0.01) higher in CP (crude protein), hemicellulose and acid insoluble ash (AIA) contents, but lower in dry matter (DM), acid detergent fiber (ADFom) and cellulose contents when compared to WT. No significant difference (p>0.05) was detected in neutral detergent fiber (NDFom) and ADL contents for both strains. Histological structure observation indicated that BM stems had fewer sclerenchyma cells and a thinner sclerenchyma cell wall than WT. The results of in situ digestion showed that BM had higher DM, NDFom, cellulose and hemicellulose disappearance at 24 or 48 h of incubation (p<0.05). The effective digestibility of BM rice straw DM and NDFom was greater than that of WT (31.4% vs 26.7% for DM, 29.1% vs 24.3% for NDFom, p<0.05), but the rate of digestion of the slowly digested fraction of BM rice straw DM and NDF was decreased. These results indicated that the mutation in the cellulose synthase gene could improve the nutritive value of rice straw for ruminants.

Tensile Stress-Crack Opening Relationship of Ultra High Performance Cementitious Composites(UHPCC) Used for Bridge Decks (바닥판 적용 초고성능 시멘트 복합체의 인장응력-균열개구 관계)

  • Kwon, Seung Hee;Lee, Seung Kook;Park, Sung Yong;Cho, Keun Hee;Cho, Jeong Rae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.1
    • /
    • pp.46-54
    • /
    • 2013
  • Two different UHPCCs having different fiber lengths and volume fractions are considered to be applied to bridge decks. The objective of this study is to estimate cracking resistance of the two UHPCCs. The notched beam tests were performed with the UHPCCs, and the relationships between load and CMOD(Crack Mouth Opening Displacement) were obtained from the tests. The tensile stress and crack opening relationships optimally fitting the measured load-CMOD curves were found through the inverse analyses. The UHPCC with 2% volume fraction of 13 mm long fiber has lower fracture energy than the UHPCC with 0.5% and 1.0% volume fractions of 16.3 mm and 19.5 mm long fibers, respectively. It indicates that the latter UHPCC is more effective in uniformly distributing crack formation and reducing crack width.

Banana agriculture waste as eco-friendly material in fibre-reinforced concrete: An experimental study

  • Mohammed M., Attia;Abd Al-Kader A., Al Sayed;Bassam A., Tayeh;Shymaa M.M., Shawky
    • Advances in concrete construction
    • /
    • v.14 no.5
    • /
    • pp.355-368
    • /
    • 2022
  • This paper investigates the impact of length and volume fractions (VFs) of banana fibres (BFs) on the mechanical and physical properties of concrete. The mechanical properties were compressive strength, splitting tensile, flexural strength, and bond stress, while the physical properties were unit weight and absorption. The slump test was used to determine workability. The concrete's behaviour with BFs was studied using scanning electron microscopy. Experimental work of concrete mixtures with BFs of various lengths (12 mm, 25 mm, and 35 mm) and VFs (0%, 0.5%, 1.0%, and 1.5%) were carried out. The samples did not indicate any agglomeration of fibres or heterogeneity during mixing. The addition of BFs to concrete with VFs of up to 1.50% for all fibre lengths have a significant impact on mechanical properties, also the longer fibres performed better than shorter ones at all volume fractions of BFs. The mix10, which contain BFs with VFs 1.5% and length 35 mm, demonstrated the highest mechanical properties. The compressive strength, splitting tensile, flexural strength, and bond stress of the mix10 were 37.71 MPa, 4.27 Mpa, 6.12 MPa, and 6.75 MPa, an increase of 7.37%, 20.96%, 24.13%, and 11.2% over the reference concrete, which was 35.12 MPa, 3.53 MPa, 4.93 MPa, and 6.07 MP, respectively. The absorption is increased for all lengths by increasing the VFs up to 1.5%. Longer fibres have lower absorption, while shorter fibres have higher absorption. The mix8 had the highest absorption of 4.52%, compared to 3.12% for the control mix. Furthermore, the microstructure of concrete was improved through improved bonding between the fibres and the matrix, which resulted in improved mechanical properties of the composite.

Impact of Protein and Lipid Contents on the Physical Property of Dried Biji Powder (건조비지분말의 물리적 특성에 대한 단백질과 지질 함량의 영향)

  • Kim, Jaehyun;Jeong, Jin Boo;Kim, Hyun-Seok
    • Food Engineering Progress
    • /
    • v.22 no.4
    • /
    • pp.344-352
    • /
    • 2018
  • The effects of chemical compositions (protein, lipid, and dietary fiber) on the physical properties of dried biji powders were investigated. The raw biji was freeze-dried (control) and hot-air dried (untreated). The untreated biji was further defatted and deproteinated. The prepared biji powders were analyzed for the proximate composition, total dietary fiber (TDF), water absorption index (WAI), water solubility index (WSI), swelling power, solubility (including the quantification of soluble carbohydrate and protein fractions), and final viscosity (using a rapid visco analyzer). Control and untreated biji powders exhibited the similar chemical compositions. The defatted biji possessed higher TDF, although its protein content did not significantly differ for control and untreated ones. The deproteinated biji consisted mainly of TDF. WAI and swelling power increased in the order: deproteinated > defatted > control > untreated biji powders. WSI and solubility increased in the order: control > untreated > defatted > deproteinated biji powders. The similar patterns were observed for soluble carbohydrate and protein fractions. The deproteinated biji revealed the highest viscosity over applied temperatures, while the untreated one was lowest. Overall results suggested that the physical properties of the dried biji powder were reduced by protein and fat, but enhanced by dietary fiber.

Production of Soluble Dietary Fiber of Buckwheat Hulls by Enzymatic Depolymerzation and its Characteristics (메밀껍질의 효소분해에 의한 수용성 식품섬유소의 생산 및 기능적 특성)

  • Im, Hee Jin;Park, Bo Yeon;Yoon, Kyung Young
    • Korean Journal of Food Science and Technology
    • /
    • v.48 no.2
    • /
    • pp.97-103
    • /
    • 2016
  • This study was conducted for the production of water-soluble dietary fiber (SDF) from buckwheat hulls by using Celluclast or Viscozyme. The functionality of this SDF, including antioxidant activity, glucose- and bile acid-retardation effects in vitro, was measured. SDF yields from cellulose and hemicellulose fractions were 60.5 and 123.7 g/kg dry matter, respectively. Analysis of molecular weight distribution of SDF by using gel chromatography showed that SDF degradation increased with increase in reaction time. The antioxidant activity of SDF obtained by enzymatic hydrolysis was higher than that of dietary fiber without enzyme treatment. SDF showed higher retardation effects on glucose and bile acid than the sample without dietary fiber did. The results of this study suggested that SDF produced from buckwheat hull by enzymatic hydrolysis is a good source of functional food material because of its high antioxidant activity and glucose- and bile acid-retardation effects.

Analytical Prediction and Validation of Elastic Behavior of Carbon-Fiber-Reinforced Woven Composites (탄소섬유강화 직조복합재의 탄성 거동의 이론적 예측 및 검증)

  • Hwang, Yeon-Taek;Lim, Jae-Young;Nam, Byeung-Gun;Kim, Hak-Sung
    • Composites Research
    • /
    • v.31 no.5
    • /
    • pp.276-281
    • /
    • 2018
  • In this paper, elastic behavior of woven fabric composites with various fiber yarn structure were predicted through a theoretical calculation model. A representative volume elements (RVE) that can represent the mechanical properties of the woven composites were selected and crimp angle of the weave yarn was defined by several sinusoidal functions. The effective material properties of the woven composite such as young's modulus, shear modulus and poisson's ratio was predicted by classical laminate theory (CLT). The fiber volume fractions were calculated according to the shape and pattern (plain, twill weave) of the fiber yarn, and the elastic behavior of each woven composite was obtained through a theoretical calculation model. Also, to verify the theoretical predictions, woven composite specimens of plain and twill weave were fabricated by vacuum assisted resin transfer molding (VARTM) process and then mechanical test was conducted. As a results, a good correlation between theoretical and experimental results for the elastic behavior of woven composites could be achieved.

Effect of Dietary Structural to Nonstructural Carbohydrate Ratio on Rumen Degradability and Digestibility of Fiber Fractions of Wheat Straw in Sheep

  • Tan, Z.-L.;Lu, D.-X.;Hu, M.;Niu, W.-Y.;Han, C.-Y.;Ren, X.-P.;Na, R.;Lin, S.-L.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.11
    • /
    • pp.1591-1598
    • /
    • 2002
  • The effect of different dietary structural carbohydrate (SC) to nonstructural carbohydrate (NSC) ratios on fiber degradation, digestion, flow, apparent digestibility and rumen fluid characteristics was studied with a design using 18 wethers fitted with permanent rumen and duodenum cannulae. All sheep were divided into six groups randomly, receiving six diets with varying SC to NSC ratios. All diets contained the same proportion of wheat straw and concentrate. The dietary SC to NSC ratios were adjusted by adding cornstarch to the concentrate supplements. The duodenal and fecal flows of dry matter (DM), neutral detergent fiber (NDF), acid detergent fiber (ADF), hemicellulose (HC) and cellulose (CEL) were estimated using chromium-mordanted wheat straw as a flow marker. The degradation parameters of wheat straw DM, NDF, ADF, HC and CEL were determined by incubating the ground wheat straw in nylon bags in the rumen for different periods of time. There was no effect (p>0.05) of the different dietary SC to NSC ratios on rumen pH or $NH_3$-N, but acetate, propionate and butyrate concentrations were significantly affected (p<0.05 or p<0.01) by dietary SC to NSC ratios in the rumen fluid. When the dietary SC to NSC ratio was 2.86, the highest rumen degradability of wheat straw DM, NDF, ADF and CEL was found, but the highest apparent rumen digestibilities of DM, NDF, ADF, HC and CEL occurred at a 2.64 SC to NSC ratio. However, because of compensatory digestion in the hindgut, the apparent digestibilities of DM, NDF, ADF, HC and CEL were highest when the dietary SC to NSC ratio was 2.40. In conclusion, there is a optimal range of dietary SC to NSC ratios (between 2.86 and 2.40) that is beneficial to maximize wheat straw fiber degradation and apparent digestibility.