• Title/Summary/Keyword: Fiber Coil

Search Result 58, Processing Time 0.022 seconds

Effect of Induction of Electromagnetic Field by Partitioned Coils on Fracture Energy of Steel Fiber Reinforced Mortar (분할된 코일을 이용한 전자기장 유도가 강섬유보강몰탈의 파괴에너지에 미치는 영향)

  • Moon, Do-Young;Mukharromah, Nur Indah
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.3
    • /
    • pp.219-226
    • /
    • 2022
  • In this experimental study, the effect of continuously changing the position of electromagnetic force using several coils and a relay switch on fracture energy was investigated. Normal mortar and steel slag mortar specimens in which 50 % and 100 % of sand was replaced with steel slag were cast and exposed to electromagnetic field. The electric field was induced by one coil without a relay switch as an existing method and by partitioning the coil and continuously changing the position using a relay switch. The fracture energy was calculated from the load-vertical displacement curve obtained from the experiment and compared with each other. As a result of the experiment, it was confirmed that the method of partitioning the coil and changing the position of electromagnetic force by using a relay switch is effective in increasing the fracture energy even if the same amount of power is used.

Fiber Based Supercapacitors for Wearable Application (웨어러블 응용을 위한 섬유형 슈퍼커패시터)

  • Jae Myeong Lee;Wonkyeong Son;Juwan Kim;Jun Ho Noh;Myoungeun Oh;Jin Hyeong Choi;Changsoon Choi
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.4
    • /
    • pp.303-325
    • /
    • 2023
  • Flexible fiber- or yarn-based one-dimensional (1-D) energy storage devices are essential for developing wearable electronics and have thus attracted considerable attention in various fields including ubiquitous healthcare (U-healthcare) systems and textile platforms. 1-D supercapacitors (SCs), in particular, are recognized as one of the most promising candidates to power wearable electronics due to their unique energy storage and high adaptability for the human body. They can be woven into textiles or effectively designed into diverse architectures for practical use in day-to-day life. This review summarizes recent important development and advances in fiber-based supercapacitors, concerning the active materials, fiber configuration, and applications. Active materials intended to enhance energy storage capability including carbon nanomaterials, metal oxides, and conductive polymers, are first discussed. With their loading methods for fiber electrodes, a summary of the four main types of fiber SCs (e.g., coil, supercoil, buckle, and hybrid structures) is then provided, followed by demonstrations of some practical applications including wearability and power supplies. Finally, the current challenges and perspectives in this field are made for future works.

HEATING PERFORMANCE OF AIR SOURCE HEAT PUMP WITH HEAT REGENERATIVE DEVICE USING FIBER BELT

  • Ryou, Y.S.;Chang, J.T.;Kim, Y.J.;Kang, G.C.;Yun, J.H.;Lee, K.J.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11c
    • /
    • pp.647-653
    • /
    • 2000
  • In this research the heat regenerative technology was employed to eliminate frosting on evaporator coil and improve COP of the heat pump system. This heat regenerative device(HRD) has very simple structure consisting a geared motor and a porous fiber belt passing through alternatively between cold and warm air duct. The laboratory test showed that the heat pump system with HRD yielded an impressive COP higher than 3.5 at the outside air temperature of $-7^{circ}C$ in heating mode.

  • PDF

Feasibility study on corrosion monitoring of a concrete column with central rebar using BOTDR

  • Sun, Yijie;Shi, Bin;Chen, Shen-En;Zhu, Honghu;Zhang, Dan;Lu, Yi
    • Smart Structures and Systems
    • /
    • v.13 no.1
    • /
    • pp.41-53
    • /
    • 2014
  • Optical fiber Brillouin sensor in a coil winding setup is proposed in this paper to measure the expansion deformation of a concrete column with a central rebar subjected to accelerated corrosion. The optical sensor monitored the whole dynamic corrosion process from initial deformation to final cracking. Experimental results show that Brillouin Optical Time Domain Reflectometer (BOTDR) can accurately measure the strain values and identify the crack locations of the simulated reinforced concrete (RC) column. A theoretical model is used to calculate the RC corrosion expansive pressure and crack length. The results indicate that the measured strain and cracking history revealed the development of the steel bar corrosion inside the simulated RC column.

Application of Suspension-Polymerized Spherical PAN beads as a Precursor of Spherical Activated Carbon (현탁중합으로 합성된 구형 PAN 수지의 구형 활성탄의 전구체로서의 활용)

  • Hyewon, Yeom;Hongkyeong, Kim
    • Journal of Institute of Convergence Technology
    • /
    • v.12 no.1
    • /
    • pp.13-18
    • /
    • 2022
  • Polyacrylonitrile was synthesized through suspension polymerization and then sieved to obtain spherical beads with a size of 200~510 ㎛. PAN was copolymerized with 2 mol% MMA monomer which is known to promote cyclization and crosslinking of nitrile group. The resonance cyclization reaction of the nitrile group in the synthesized PAN beads was observed near 170℃ with thermal analysis and FT-IR. The reaction conversion of the nitrile group in spherical beads was 23% during heat treatment, which was lower than that of the well-oriented PAN fiber used as a precursor of carbon fiber. This is because the stereo-regularity of molecular chains in the form of a random coil (spherical bead) is much lower than that of PAN fiber. It was confirmed that the compressive strength of the spherical PAN bead was greatly improved through the resonance cyclization and shrinkage according to the heat treatment, and it was also observed that the pores in PAN beads were formed after the heat treatment.

Detection of Corrosion and Wall Thinning in Carbon Steel Pipe Covered With Insulation Using Pulsed Eddy Current

  • Park, Duck-Gun;Kishore, M.B.;Kim, J.Y.;Jacobs, L.J.;Lee, D.H.
    • Journal of Magnetics
    • /
    • v.21 no.1
    • /
    • pp.57-60
    • /
    • 2016
  • Non Destructive Testing (NDT) methods that are capable of detecting the wall thinning and defects through insulation and cladding sheets are necessary. In this study we developed a Pulsed Eddy Current (PEC) system to detect wall thinning of ferro magnetic steel pipes covered with 95 mm thick fiber glass thermal insulator and shielded with aluminum plate of thickness 0.4 mm. In order to confirm the thickness change due to wall thinning, two different sensors, a hall sensor and a search coil sensor were used as a detecting element. In both the cases, the experimental data indicates a considerable change in the detected pulse corresponding to the change in sample thickness. The thickness of the tube was made to change such as 2.5 mm, 5 mm and 8 mm from the inner surface to simulate wall thinning. Fast Fourier Transform (FFT) was calculated using window approach and the results were summarized which shows a clear identification of thickness change in the test specimen by comparing the magnitude spectra.

Fiber-Optic Current Transformer for the Over Current Protection Relay (과전류 보호계전기용 광섬유 전류센서)

  • Song, Min-Ho;Yang, Chang-Soon;Ahn, Seong-Joon;Park, Byoung-Seok;Lee, Byoung-Ho
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.5
    • /
    • pp.542-548
    • /
    • 2001
  • A robust, accurate, broad-band, alternating current sensor using fiber-optics is being developed as a part of optical over current protection relay system. The sensor uses the Faraday effect in optical fiber and polarimetric measurements tc sense electrical current. The current sensing coil consists of a length of twisted optical fiber and Faraday rotator mirror to suppress the linear birefringence effect. Due to its single-ended closed path structure, it can not only be easily installed to the target with great isolation from other fields in the vicinity, but the sensitivity can be increased by using multiple turns. This paper reports on the theoretical backgrounds of the sensor design and the preliminary experimental results.

  • PDF

A Development of Small-diameter Composite Helical Spring for Reinforcement of Optical Fiber Jumper Cord (OJC) (광점퍼코드 (OJC) 보호용 미소 직경 복합재료 스프링 개발)

  • 윤영기;박성도;이연수;윤희석;이우일
    • Composites Research
    • /
    • v.15 no.4
    • /
    • pp.17-22
    • /
    • 2002
  • Small diameter composite helical springs (CS) are developed using a hot plated mold for reinforcement of common optical fiber jumper cord (OJC). The outer diameters of the springs are about 2 ~ 3mm. These springs are inserted into the OJC to protect the damage of an optical fiber from the sudden lateral load. Two types of CS, Yarn type (Y-type) and Band type (B-type), are manufactured to compare the effectiveness for the damage protection. The experimental works were conducted to check the effect of the CS covered around OJC on the mechanical and optical properties. Experimental observations show a considerable effect on the flexural resistance, hence slowing down the deterioration of the optical power by the internal damage of the fiber. Obtained main results are as follows: (1) Y-type CS has better protection abilities to lateral loading than B-types. (2) Compared with bare OJC, CS-OJC has less power loss under the loading. (3) OJC covered with the composite coil spring has a possibility for a practical usage with full fruits.

Preparation of Coil-Embolic Material Using Syndiotactic Poly(vinyl alcohol) Gel Spun Fibers (교대배열 PVA 젤 섬유를 이용한 고분자 색전 코일 제조)

  • Seo, Young Ho;Oh, Tae Hwan;Han, Sung Soo;Joo, Sang Woo;Khil, Myeong Seob
    • Polymer(Korea)
    • /
    • v.37 no.4
    • /
    • pp.486-493
    • /
    • 2013
  • The structure, morphology, and physical properties of syndiotatic poly(vinyl alcohol) (s-PVA) gel spun fibers were investigated to prepare polymeric embolization coils. S-PVA was prepared by saponification of the poly(vinyl acetate)/poly(vinyl pivalate)(PVAc/PVPi) copolymer. The viscosity of s-PVA solutions showed shear thinning behavior and the solution formed a homogeneous phase. Based on shear viscosity change with concentration, the optimum dope concentration was selected as 13 wt%, after which s-PVA fibers were spun and the solvent was removed. The fibers were then drawn with a maximum draw ratio of 15. A polymeric embolization coil was made of the s-PVA gel-spun fibers. The fibers were wound densely onto rigid rod and then annealed at different annealing temperatures. The polymeric embolization coil annealed at $200^{\circ}C$ was similar to metallic coils and its shape was maintained well after extension. Overall, gel-spun PVA fibers performed well for the preparation of primary and secondary coils to replace metallic coils.

IMMUNOHISTOCHEMICAL STUDY ON THE PERIODONTAL TISSUE REACTION DURING EXPERIMENTAL TOOTH MOVEMENT IN THE ADULT DOG (실험적 치아 이동시 성견 치주조직의 변화에 대한 면역조직화학적 연구)

  • Kim, Mi-Jeong;Yang, Won-Sik
    • The korean journal of orthodontics
    • /
    • v.23 no.1 s.40
    • /
    • pp.89-100
    • /
    • 1993
  • The purpose of this study was to evaluate the effect of orthodontic force on periodontal cellular activity by immunoperoxidase stain of epidermal growth factor, one of the tissue hormone. And supplementarily, to investigate of the changes of periodontal structures, periodontium was stained by H-E, Masson's Trichrome, P. A. S. stain after orthodontic force application. The experimental animals were four young adult dogs of average 8 month old. The fixed orthodontic appliance was cemented on mandibular right 4th premolar and 1st molar of each animal as experimental site. Mandibular left 4th premolar area of the same animal was used as control. The appliance consist of two silver crown soldered with 0.030' tube, $0.018\times0.022'$ S.S. sectional arch wire, and 0.009' open coil spring for manifestating of orthodontic force for bodily tooth movement of mandibular 4th premolar toward mesial direction. Experimental group was sacrificed at 1, 2, 3, 5 weeks from beginning of the experiment, and was investigated immunohistochemically and bistochemically by several staining methods. Findings were as follows: 1. The degree of EGF staining in control group was highest in epithelium of periodontium, and osteoclasts, osteoblasts and fibroblasts around the capillary were stained at higher level in periodontium. Generally, control group shows positive distribution of EGF all around the periodontal area. 2. The degree of EGF staining in control and 5 week group were similar, and did not show the significant different level between tension and pressure side. 3. All of 1, 2, 3 week group showed the same staining degree and distribution of EGF, and the tension side was more positive reaction of EGF stain than the pressure side. 4. The features of collagen fiber and periodontal fiber arrangement observed by H-E, Masson's Trichrome and P. A. S. stain revealed that oblique periodontal fibers were strectched in tension side, compressed in pressure side of all experimental group. Some fiber group in pressure side of 5 week group recovered the regular arrangement along the capillaries.

  • PDF