Browse > Article
http://dx.doi.org/10.7317/pk.2013.37.4.486

Preparation of Coil-Embolic Material Using Syndiotactic Poly(vinyl alcohol) Gel Spun Fibers  

Seo, Young Ho (Department of Nano, Medical and Polymer Materials, Yeungnam University)
Oh, Tae Hwan (Department of Nano, Medical and Polymer Materials, Yeungnam University)
Han, Sung Soo (Department of Nano, Medical and Polymer Materials, Yeungnam University)
Joo, Sang Woo (School of Mechanical Engineering, Yeungnam University)
Khil, Myeong Seob (Department of Organic Materials and Fiber Engineering, Chonbuk National University)
Publication Information
Polymer(Korea) / v.37, no.4, 2013 , pp. 486-493 More about this Journal
Abstract
The structure, morphology, and physical properties of syndiotatic poly(vinyl alcohol) (s-PVA) gel spun fibers were investigated to prepare polymeric embolization coils. S-PVA was prepared by saponification of the poly(vinyl acetate)/poly(vinyl pivalate)(PVAc/PVPi) copolymer. The viscosity of s-PVA solutions showed shear thinning behavior and the solution formed a homogeneous phase. Based on shear viscosity change with concentration, the optimum dope concentration was selected as 13 wt%, after which s-PVA fibers were spun and the solvent was removed. The fibers were then drawn with a maximum draw ratio of 15. A polymeric embolization coil was made of the s-PVA gel-spun fibers. The fibers were wound densely onto rigid rod and then annealed at different annealing temperatures. The polymeric embolization coil annealed at $200^{\circ}C$ was similar to metallic coils and its shape was maintained well after extension. Overall, gel-spun PVA fibers performed well for the preparation of primary and secondary coils to replace metallic coils.
Keywords
s-PVA; gel spun fibers; draw ratio; coil; embolization;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. G. Cacace, E. M. Landau, and J. Ramsden, J. Rev. Biophys., 30, 241 (1997).   DOI   ScienceOn
2 M. Watase and K. Nishinari, Polym. J., 21, 567 (1989).   DOI   ScienceOn
3 E. Prokopova, P. Stern, and O. Quadrat, Colloid Polym. Sci., 263, 899 (1985).   DOI   ScienceOn
4 K. Arruda, T. M. Caniello, and A. A. A. Queiroz, Mater. Sci. Eng. C, 24, 697 (2004).   DOI   ScienceOn
5 Y. S. Chung, C. Y. Choi, K. W. Lee, Y. H. Choa, and P. K. Pak, J. Korean Fiber Soc., 39, 383 (2002).
6 B. Granqvist, A. Helmnen, M. Vehvilainen, V. Aaritalo, J. Seppala, and M. Linden, Colloid Polym. Sci., 282, 495 (2004).   DOI
7 T. H. Lanman, N. A. Martin, and H. V. Vinters, Neuoradiol, 33, 1 (1998).
8 J. F. Tomashefski, A. M. Cohen, and C. F. Doershuk, Human Pathology, 19, 555 (1998).
9 W. S. Lyoo, I. S. Seo, J. H. Yeum, W. S. Yoon, B. C. Ji, B. S. Kim, S. S. Lee, and B. C. Kim, J. Appl. Polym. Sci., 86, 463 (2002).   DOI   ScienceOn
10 J. H. Choi, S. W. Ko, B. C. Kim, J. Blackwell, and W. S. Lyoo, Macromolecules, 34, 2964 (2001).   DOI   ScienceOn
11 T. Yamamoto, S. Seki, R. Fukae, O. Sangen, and M. Kamachi, Polym. J., 22, 567 (1990).   DOI   ScienceOn
12 S. I. Song, Y. J. Seoung, and B. C. Kim, Theories and Applications of Rheology, 7, 135 (2003).
13 W. S. Lyoo and W. S. Ha, Polymer, 40, 497 (1999).   DOI   ScienceOn
14 W. S. Lyoo and W. S. Ha, Polymer, 37, 3121 (1996).   DOI   ScienceOn
15 E. J. Lee, N. H. Kim, and B. C. Kim, Korean J. Rheol., 9, 118 (1997).
16 S. H. Hyon, W. I. Cha, and Y. Ikada, Polym. Bull., 22, 119 (1989).   DOI
17 M. Watase and K. Nishinari, Polym. J., 21, 567 (1989).   DOI   ScienceOn
18 K. Yamaura, M. Itoh, T. Tanigami, and S. Matsuzawa, J. Appl. Polym. Sci., 37, 2709 (1989).   DOI   ScienceOn
19 M. Hanaya, I. Osawa, and K. Watanabe, J. Therm. Anal. Calorim., 76, 529 (2004,).   DOI
20 K. J. Packer and D. J. Tomlinson, Trans. Faraday Soc., 67, 1302 (1971).   DOI
21 G. T. Safford, P. C. Schaffer, P. S. Leung, G. F. Doebbler, G. W. Brady, and E. F. X. Lyden, J. Chem. Phys., 50, 3140 (1969).
22 Y. Ito, H. Hasuda, M. Kamitakahara, C. Ohtsuki, M. Tanihara, I. K. Kang, and O. H. Kwon, J. Biosci. Bioeng., 100, 43 (2005).   DOI   ScienceOn
23 H. Staudinger, K. Frey, and W. Stark, Ber. Dtsch. Chem. Ges., 60, 1782 (1927).   DOI
24 S. J. Bryant, C. R. Nettelman, and K. S. Anseth, Biomed. Sci. Instrum., 35, 309 (1999).
25 I. Rehman and W. Bonfield, J. Mater. Sci.: Mater. Med., 8, 1 (1999).
26 Y. Aldenhoff, M. Kruft, P. Pijpers, F. H. Veen, S. K. Bulstra, R. Kuijer, and L. H. Koole, Biomaterials, 23, 881 (2002).   DOI   ScienceOn
27 M. J. Dalby, L. Di Silvio, N. Gurav, B. Annaz, M. V. Kayser, and W. Bonfield, Tissue Eng., 8, 453 (2002).   DOI   ScienceOn
28 T. Nakano, Y. H. Uasa, and Y. Kanaya, Pharm. Res., 16, 1616 (1999).   DOI   ScienceOn
29 K. Kato, Y. Eika, and Y. Ikada, J. Biomed. Mater. Res., 32, 687 (1996).   DOI
30 T. Serizawa, T. Tateishi, and M. Akashi, J. Biomater. Sci. Polym. Ed., 14, 653 (2003).   DOI   ScienceOn
31 K. H. Schmidt, R. Patel, and D. Meisel, J. Am. Chem. Soc., 110, 4882 (1988)   DOI
32 S. Nozakura and M. S. Murahashi, J. Polym. Sci., Polym. Chem. Ed., 11, 279 (1973).
33 K. T. Brown, L. A. Brody, D. R. Decorato, and G. I. Getrajdman, J. Vasc. Interv. Radiol., 12, 882 (2001).   DOI   ScienceOn
34 H. Tamai, H. Sakurai, T. Suzawa, and H. Yasuda, J. Appl. Polym. Sci., 51, 1277 (1994).   DOI   ScienceOn
35 A. Luzar and D. Chandler, J. Chem. Phys., 98, 8160 (1993).   DOI   ScienceOn
36 H. D. Ghim, J. P. Kim, I. C. Kwon, C. J. Lee, J. Lee, S. S. Kim, S. M. Lee, W. S. Yoon, and W. S. Lyoo, J. Appl. Polym. Sci., 87, 1519 (2003).   DOI   ScienceOn
37 W. S. Lyoo, B. C. Kim, and J. Blackwell, Macromolecules, 34, 3982 (2001).   DOI   ScienceOn
38 N. Nakajima, Kobunshi Kagaku, 11, 142 (1954).   DOI
39 W. S. Lyoo, B. C. Kim, and W. S. Ha, Polym. Eng. Sci., 37, 1259 (1997).   DOI   ScienceOn
40 T. Yamamoto, S. Seki, M. Hirota, and M. Kamachi, Polym. J., 22, 1417 (1987).