• Title/Summary/Keyword: Feynman integrals

Search Result 36, Processing Time 0.018 seconds

A CHANGE OF SCALE FORMULA FOR CONDITIONAL WIENER INTEGRALS ON CLASSICAL WIENER SPACE

  • Yoo, Il;Chang, Kun-Soo;Cho, Dong-Hyun;Kim, Byoung-Soo;Song, Teuk-Seob
    • Journal of the Korean Mathematical Society
    • /
    • v.44 no.4
    • /
    • pp.1025-1050
    • /
    • 2007
  • Let $X_k(x)=({\int}^T_o{\alpha}_1(s)dx(s),...,{\int}^T_o{\alpha}_k(s)dx(s))\;and\;X_{\tau}(x)=(x(t_1),...,x(t_k))$ on the classical Wiener space, where ${{\alpha}_1,...,{\alpha}_k}$ is an orthonormal subset of $L_2$ [0, T] and ${\tau}:0 is a partition of [0, T]. In this paper, we establish a change of scale formula for conditional Wiener integrals $E[G_{\gamma}|X_k]$ of functions on classical Wiener space having the form $$G_{\gamma}(x)=F(x){\Psi}({\int}^T_ov_1(s)dx(s),...,{\int}^T_o\;v_{\gamma}(s)dx(s))$$, for $F{\in}S\;and\;{\Psi}={\psi}+{\phi}({\psi}{\in}L_p(\mathbb{R}^{\gamma}),\;{\phi}{\in}\hat{M}(\mathbb{R}^{\gamma}))$, which need not be bounded or continuous. Here S is a Banach algebra on classical Wiener space and $\hat{M}(\mathbb{R}^{\gamma})$ is the space of Fourier transforms of measures of bounded variation over $\mathbb{R}^{\gamma}$. As results of the formula, we derive a change of scale formula for the conditional Wiener integrals $E[G_{\gamma}|X_{\tau}]\;and\;E[F|X_{\tau}]$. Finally, we show that the analytic Feynman integral of F can be expressed as a limit of a change of scale transformation of the conditional Wiener integral of F using an inversion formula which changes the conditional Wiener integral of F to an ordinary Wiener integral of F, and then we obtain another type of change of scale formula for Wiener integrals of F.

Calculation of the Cubic Crystal Field Splitting 10 Dq in KNiF$_3$. An Integral Hellmann-Feynman Approach (Integral Hellmann-Feynman Approach에 의한 KNiF$_3$의 Cubic Crystal Field Splitting 10 Dq의 계산)

  • Hojing Kim;Hie-Joon Kim
    • Journal of the Korean Chemical Society
    • /
    • v.17 no.6
    • /
    • pp.395-405
    • /
    • 1973
  • By use of an Integral Hellmann-Feynman formula, the cubic crystal field splitting 1O Dq in $KNiF_3$ is calculated from first principles. Numerical values of covalency parameters and necessary integrals are quoted from Sugano and Shulman. The result, 7100$cm^{-1}$, is in excellent agreement with the observed value, 7250$cm^{-1}$. It is found that higher order perturbation energy correction is of the same order of magnitude as 10 Dq itself and is, therefore, essential tin calculating 10 Dq from first principles. It is also found that the point charge potential is the dominant part of the crystal field potential.

  • PDF

Some Finite Integrals Involving The Product of Srivastava's Polynomials and A Certain $\bar{H}$-Function with Applications

  • Singh, Yashwant;Garg, Atul
    • Kyungpook Mathematical Journal
    • /
    • v.48 no.2
    • /
    • pp.165-171
    • /
    • 2008
  • The aim of this paper is to evaluate four finite integrals involving the product of Srivastava's polynomials, a generalized hypergeometric function and $\bar{H}$-function proposed by Inayat Hussian which contains a certain class of Feynman integrals. At the end, we give an application of our main findings by connecting them with the Riemann-Liouville type of fractional integral operator. The results obtained by us are basic in nature and are likely to find useful applications in several fields notably electric networks, probability theory and statistical mechanics.

SCALE TRANSFORMATIONS FOR PRESENT POSITION-INDEPENDENT CONDITIONAL EXPECTATIONS

  • Cho, Dong Hyun
    • Journal of the Korean Mathematical Society
    • /
    • v.53 no.3
    • /
    • pp.709-723
    • /
    • 2016
  • Let C[0, t] denote a generalized Wiener space, the space of real-valued continuous functions on the interval [0, t] and define a random vector $Z_n:C[0,t]{\rightarrow}{\mathbb{R}}^n$ by $Zn(x)=(\int_{0}^{t_1}h(s)dx(s),{\cdots},\int_{0}^{t_n}h(s)dx(s))$, where 0 < $t_1$ < ${\cdots}$ < $t_n$ < t is a partition of [0, t] and $h{\in}L_2[0,t]$ with $h{\neq}0$ a.e. In this paper we will introduce a simple formula for a generalized conditional Wiener integral on C[0, t] with the conditioning function $Z_n$ and then evaluate the generalized analytic conditional Wiener and Feynman integrals of the cylinder function $F(x)=f(\int_{0}^{t}e(s)dx(s))$ for $x{\in}C[0,t]$, where $f{\in}L_p(\mathbb{R})(1{\leq}p{\leq}{\infty})$ and e is a unit element in $L_2[0,t]$. Finally we express the generalized analytic conditional Feynman integral of F as two kinds of limits of non-conditional generalized Wiener integrals of polygonal functions and of cylinder functions using a change of scale transformation for which a normal density is the kernel. The choice of a complete orthonormal subset of $L_2[0,t]$ used in the transformation is independent of e and the conditioning function $Z_n$ does not contain the present positions of the generalized Wiener paths.

AN APPROACH TO SOLUTION OF THE SCHRÖDINGER EQUATION USING FOURIER-TYPE FUNCTIONALS

  • Chang, Seung Jun;Choi, Jae Gil;Chung, Hyun Soo
    • Journal of the Korean Mathematical Society
    • /
    • v.50 no.2
    • /
    • pp.259-274
    • /
    • 2013
  • In this paper, we consider the Fourier-type functionals on Wiener space. We then establish the analytic Feynman integrals involving the ${\diamond}$-convolutions. Further, we give an approach to solution of the Schr$\ddot{o}$dinger equation via Fourier-type functionals. Finally, we use this approach to obtain solutions of the Schr$\ddot{o}$dinger equations for harmonic oscillator and double-well potential. The Schr$\ddot{o}$dinger equations for harmonic oscillator and double-well potential are meaningful subjects in quantum mechanics.

Conditional Feynman Integrals involving indefinite quadratic form

  • Chung, Dong-Myung;Kang, Si-Ho
    • Journal of the Korean Mathematical Society
    • /
    • v.31 no.3
    • /
    • pp.521-537
    • /
    • 1994
  • We consider the Schrodinger equation of quantum mechanics $$ i\hbar\frac{\partial t}{\partial}\Gamma(t, \vec{\eta}) = -\frac{2m}{\hbar}\Delta(t, \vec{\eta}) + V(\vec{\eta}\Gamma(t, \vec{\eta}) (1.1) $$ $$ \Gamma(0, \vec{\eta}) = \psi(\vec{\eta}), \vec{\eta} \in R^n $$ where $\Delta$ is the Laplacian on $R^n$, $\hbar$ is Plank's constant and V is a suitable potential.

  • PDF