• 제목/요약/키워드: Feynman integrals

검색결과 36건 처리시간 0.018초

A CHANGE OF SCALE FORMULA FOR CONDITIONAL WIENER INTEGRALS ON CLASSICAL WIENER SPACE

  • Yoo, Il;Chang, Kun-Soo;Cho, Dong-Hyun;Kim, Byoung-Soo;Song, Teuk-Seob
    • 대한수학회지
    • /
    • 제44권4호
    • /
    • pp.1025-1050
    • /
    • 2007
  • Let $X_k(x)=({\int}^T_o{\alpha}_1(s)dx(s),...,{\int}^T_o{\alpha}_k(s)dx(s))\;and\;X_{\tau}(x)=(x(t_1),...,x(t_k))$ on the classical Wiener space, where ${{\alpha}_1,...,{\alpha}_k}$ is an orthonormal subset of $L_2$ [0, T] and ${\tau}:0 is a partition of [0, T]. In this paper, we establish a change of scale formula for conditional Wiener integrals $E[G_{\gamma}|X_k]$ of functions on classical Wiener space having the form $$G_{\gamma}(x)=F(x){\Psi}({\int}^T_ov_1(s)dx(s),...,{\int}^T_o\;v_{\gamma}(s)dx(s))$$, for $F{\in}S\;and\;{\Psi}={\psi}+{\phi}({\psi}{\in}L_p(\mathbb{R}^{\gamma}),\;{\phi}{\in}\hat{M}(\mathbb{R}^{\gamma}))$, which need not be bounded or continuous. Here S is a Banach algebra on classical Wiener space and $\hat{M}(\mathbb{R}^{\gamma})$ is the space of Fourier transforms of measures of bounded variation over $\mathbb{R}^{\gamma}$. As results of the formula, we derive a change of scale formula for the conditional Wiener integrals $E[G_{\gamma}|X_{\tau}]\;and\;E[F|X_{\tau}]$. Finally, we show that the analytic Feynman integral of F can be expressed as a limit of a change of scale transformation of the conditional Wiener integral of F using an inversion formula which changes the conditional Wiener integral of F to an ordinary Wiener integral of F, and then we obtain another type of change of scale formula for Wiener integrals of F.

Integral Hellmann-Feynman Approach에 의한 KNiF$_3$의 Cubic Crystal Field Splitting 10 Dq의 계산 (Calculation of the Cubic Crystal Field Splitting 10 Dq in KNiF$_3$. An Integral Hellmann-Feynman Approach)

  • 김호징;김희준
    • 대한화학회지
    • /
    • 제17권6호
    • /
    • pp.395-405
    • /
    • 1973
  • Integral Hellmann-Feynman formula를 사용하여 $KNiF_3$의 cubic crystal splitting 10Dq를 first principle로부터 계산하였다. Covalency parameter들과 필요한 적분치들은 Sugano와 Shulman의 계산치를 사용하였다. 계산치 7100$cm^{-1}$는 실험치 7250$cm^{-1}$와 대단히 잘 일치하였다. 고차섭동에너지 보정치는 10 Dq 자체와 같은 order of magnitude를 가지며 따라서 first principle로부터 10 Dq를 계산하는데 있어서 반드시 고려되어야 할 몫이라는 것을 발견하였다. 또한 point charge potential이 crystal field potential의 압도적인 부분을 차지하는 것을 발견하였다.

  • PDF

Some Finite Integrals Involving The Product of Srivastava's Polynomials and A Certain $\bar{H}$-Function with Applications

  • Singh, Yashwant;Garg, Atul
    • Kyungpook Mathematical Journal
    • /
    • 제48권2호
    • /
    • pp.165-171
    • /
    • 2008
  • The aim of this paper is to evaluate four finite integrals involving the product of Srivastava's polynomials, a generalized hypergeometric function and $\bar{H}$-function proposed by Inayat Hussian which contains a certain class of Feynman integrals. At the end, we give an application of our main findings by connecting them with the Riemann-Liouville type of fractional integral operator. The results obtained by us are basic in nature and are likely to find useful applications in several fields notably electric networks, probability theory and statistical mechanics.

SCALE TRANSFORMATIONS FOR PRESENT POSITION-INDEPENDENT CONDITIONAL EXPECTATIONS

  • Cho, Dong Hyun
    • 대한수학회지
    • /
    • 제53권3호
    • /
    • pp.709-723
    • /
    • 2016
  • Let C[0, t] denote a generalized Wiener space, the space of real-valued continuous functions on the interval [0, t] and define a random vector $Z_n:C[0,t]{\rightarrow}{\mathbb{R}}^n$ by $Zn(x)=(\int_{0}^{t_1}h(s)dx(s),{\cdots},\int_{0}^{t_n}h(s)dx(s))$, where 0 < $t_1$ < ${\cdots}$ < $t_n$ < t is a partition of [0, t] and $h{\in}L_2[0,t]$ with $h{\neq}0$ a.e. In this paper we will introduce a simple formula for a generalized conditional Wiener integral on C[0, t] with the conditioning function $Z_n$ and then evaluate the generalized analytic conditional Wiener and Feynman integrals of the cylinder function $F(x)=f(\int_{0}^{t}e(s)dx(s))$ for $x{\in}C[0,t]$, where $f{\in}L_p(\mathbb{R})(1{\leq}p{\leq}{\infty})$ and e is a unit element in $L_2[0,t]$. Finally we express the generalized analytic conditional Feynman integral of F as two kinds of limits of non-conditional generalized Wiener integrals of polygonal functions and of cylinder functions using a change of scale transformation for which a normal density is the kernel. The choice of a complete orthonormal subset of $L_2[0,t]$ used in the transformation is independent of e and the conditioning function $Z_n$ does not contain the present positions of the generalized Wiener paths.

AN APPROACH TO SOLUTION OF THE SCHRÖDINGER EQUATION USING FOURIER-TYPE FUNCTIONALS

  • Chang, Seung Jun;Choi, Jae Gil;Chung, Hyun Soo
    • 대한수학회지
    • /
    • 제50권2호
    • /
    • pp.259-274
    • /
    • 2013
  • In this paper, we consider the Fourier-type functionals on Wiener space. We then establish the analytic Feynman integrals involving the ${\diamond}$-convolutions. Further, we give an approach to solution of the Schr$\ddot{o}$dinger equation via Fourier-type functionals. Finally, we use this approach to obtain solutions of the Schr$\ddot{o}$dinger equations for harmonic oscillator and double-well potential. The Schr$\ddot{o}$dinger equations for harmonic oscillator and double-well potential are meaningful subjects in quantum mechanics.

Conditional Feynman Integrals involving indefinite quadratic form

  • Chung, Dong-Myung;Kang, Si-Ho
    • 대한수학회지
    • /
    • 제31권3호
    • /
    • pp.521-537
    • /
    • 1994
  • We consider the Schrodinger equation of quantum mechanics $$ i\hbar\frac{\partial t}{\partial}\Gamma(t, \vec{\eta}) = -\frac{2m}{\hbar}\Delta(t, \vec{\eta}) + V(\vec{\eta}\Gamma(t, \vec{\eta}) (1.1) $$ $$ \Gamma(0, \vec{\eta}) = \psi(\vec{\eta}), \vec{\eta} \in R^n $$ where $\Delta$ is the Laplacian on $R^n$, $\hbar$ is Plank's constant and V is a suitable potential.

  • PDF