• Title/Summary/Keyword: Feruloyl-CoA

Search Result 7, Processing Time 0.021 seconds

Production of Bacterial Quorum Sensing Antagonists, Caffeoyl- and Feruloyl-HSL, by an Artificial Biosynthetic Pathway

  • Kang, Sun-Young;Kim, Bo-Min;Heo, Kyung Taek;Jang, Jae-Hyuk;Kim, Won-Gon;Hong, Young-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.12
    • /
    • pp.2104-2111
    • /
    • 2017
  • A new series comprising phenylacetyl-homoserine lactones (HSLs), caffeoyl-HSL and feruloyl-HSL, was biologically synthesized using an artificial de novo biosynthetic pathway. We developed an Escherichia coli system containing artificial biosynthetic pathways that yield phenylacetyl-HSLs from simple carbon sources. These artificial biosynthetic pathways contained the LuxI-type synthase gene (rpaI) in addition to caffeoyl-CoA and feruloyl-CoA biosynthetic genes, respectively. Finally, the yields for caffeoyl-HSL and feruloyl-HSL were $97.1{\pm}10.3$ and $65.2{\pm}5.7mg/l$, respectively, by tyrosine-overproducing E. coli with a $\text\tiny{L}$-methionine feeding strategy. In a quorum sensing (QS) competition assay, feruloyl-HSL and p-coumaroyl-HSL antagonized the QS receptor TraR in Agrobacterium tumefaciens NT1, whereas caffeoyl-HSL did not.

Structure-Guided Identification of Novel Phenolic and Phenolic Amide Allosides from the Rhizomes of Cimicifuga heracleifolia

  • Yim, Soon-Ho;Kim, Hyun-Jung;Jeong, Na-Ri;Park, Ki-Deok;Lee, Young-Ju;Cho, Sung-Dong;Lee, Ik-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.4
    • /
    • pp.1253-1258
    • /
    • 2012
  • Two phenolic allopyranosides and two phenolic amide allopyranosides, along with eight known phenolic compounds, including cimicifugic acids, shomaside B, fukiic acid, isoferulic acid, and piscidic acid, were isolated from the n-butanolic extract of rhizomes of Cimicifuga heracleifolia. On-line spectroscopic data for UV, NMR, and MS from a combination of LC-NMR and LC-MS techniques directly and rapidly provided sufficient structural information to identify and confirm all the structures of major phenolic compounds in the extract, in addition to their HPLC profiles. This combined analytic information was then used as a dereplication tool for structure-guided screening in order to isolate unknown phenolic compounds in the extract. Successive fractionation and purification using semi-preparative HPLC acquired four unknown allopyranosides, and their structures were identified as cis-ferulic acid 4-O-${\beta}$-D-allopyranoside, trans-ferulic acid 4-O-${\beta}$-D-allopyranoside, trans-feruloyltyramine 4-O-${\beta}$-D-allopyranoside, and trans-feruloyl-(3-O-methyl)dopamine 4-O-${\beta}$-D-allopyranoside, based on a subsequent spectroscopic interpretation.

Biotransformation of Eugenol via Protocatechuic Acid by Thermophilic Geobacillus sp. AY 946034 Strain

  • Giedraityte, Grazina;Kalediene, Lilija
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.4
    • /
    • pp.475-482
    • /
    • 2014
  • The metabolic pathway of eugenol degradation by thermophilic Geobacillus sp. AY 946034 strain was analyzed based on the lack of data about eugenol degradation by thermophiles. TLC, GC-MS, and biotransformation with resting cells showed that eugenol was oxidized through coniferyl alcohol, and ferulic and vanillic acids to protocatechuic acid before the aromatic ring was cleaved. The cell-free extract of Geobacillus sp. AY 946034 strain grown on eugenol showed a high activity of eugenol hydroxylase, feruloyl-CoA synthetase, vanillate-O-demethylase, and protocatechuate 3,4-dioxygenase. The key enzyme, protocatechuate 3,4-dioxygenase, which plays a crucial role in the degradation of various aromatic compounds, was purified 135-fold to homogeneity with a 34% overall recovery from Geobacillus sp. AY 946034. The relative molecular mass of the native enzyme was about $450{\pm}10$ kDa and was composed of the non-identical subunits. The pH and temperature optima for enzyme activity were 8 and $60^{\circ}C$, respectively. The half-life of protocatechuate 3,4-dioxygenase at the optimum temperature was 50 min.

The Inhibitory Effect of Hydroxycinnamic Acid Derivatives from Corn (Zea may L.) Bran on Melanogenesis (옥수수겨 유래 하이드록시신나믹애씨드 유도체의 멜라닌 생성 저해 효과)

  • Kim, Mi-Jin;Im, Kyung-Ran;Jeong, Taek-Gyu;Yoon, Kyung-Sup;Choi, Sang-Won
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.35 no.2
    • /
    • pp.143-149
    • /
    • 2009
  • Several hydroxycinnamic acid derivatives, p-coumaric acid, ferulic acid, N,N'-dicoumaroylputrescine (DCP), N-p-coumaroyl-N'-feruloyl-putrescine (CFP), and N,N'-diferuloylputrescine (DFP) were isolated and purified from corn bran. To develop the skin whitening agent, we investigated the effects of hydroxycinnamic acid derivatives from corn bran, on melanogenesis. CFP and DFP inhibited melanin synthesis in a dose dependent manner up to 44.7 ${\pm}$ 6.0 %, and 58.5 ${\pm}$ 3.1 % at a concentration of 50 ${\mu}g/mL$, respectively. The intracellular tyrosinase activity decreased about 42.5 ${\pm}$ 14.6 %, and 9.0 ${\pm}$ 4.4 % at a concentration of 50 ${\mu}g/mL$ of CFP and DFP, respectively. Our results suggest that inhibitory effects of hydroxycinnamic acid derivatives on melanogenesis are due to the inhibition of the intracellular tyrosinase activity. These results indicate that these hydroxycinnamic acid derivatives from corn bran may be potential natural skin whitening agents.

Efficacy of combination of endo-xylanase and xylan-debranching enzymes in improving cereal bran utilization in piglet diet

  • Wang, Weiwei;Zheng, Dawen;Zhang, Zhenzhen;Ye, Hui;Cao, Qingyun;Zhang, Changming;Dong, Zemin;Feng, Dingyuan;Zuo, Jianjun
    • Animal Bioscience
    • /
    • v.35 no.11
    • /
    • pp.1733-1743
    • /
    • 2022
  • Objective: This study was aimed to explore the efficacy of combination of endo-xylanase (Xyn) and xylan-debranching enzymes (arabinofuranosidase, Afd and feruloyl esterase, FE) in improving utilization of bran in piglet diet. Methods: In vitro experiments were firstly conducted to examine the enzymological properties of Xyn, Afd, and FE, concurrent with their effect on degradation of arabinoxylan (Abx) in bran. In vivo experiment was then implemented by allocating two hundred and seventy 35-d-old postweaning piglets into 3 groups (6 replicates/group), which received bran-containing diet supplemented with Xyn (1,600 U/kg) or its combination with Afd (0.8 U/kg) and FE (4 U/kg) or without enzyme. Results: Both Xyn, Afd, and FE are relatively stable against the changes in temperature and pH value. Combining Xyn with Afd and FE had a superiority (p<0.05) over Xyn alone and its combination with Afd or FE in promoting (p<0.05) degradation of Abx in different brans. Combined treatment with Xyn, Afd, and FE was more beneficial than Xyn alone to induce increasing trends (p<0.10) of average daily gain, final body weight and feed efficiency of piglets fed bran-containing diet. Moreover, combination of Xyn, Afd, and FE showed advantages (p<0.05) over Xyn alone in causing reductions (p<0.05) in diarrhea rate and cecal pH value, concurrent with increases (p<0.05) in cecal and colonic acetic acid and total volatile fatty acid concentrations, as well as cecal butyric acid concentration of piglets fed bran-containing diet. Conclusion: Combining Xyn with Afd and FE was more beneficial than Xyn alone in promoting degradation of Abx in bran, along with growth performance and intestinal volatile fatty acid profile of piglets received bran-containing diet. Thereby, combination of Xyn, Afd, and FE had a superior efficacy relative to Xyn alone in improving application of cereal bran in piglet diet.

Production of Vanillin from Ferulic Acid Using Recombinant Strains of Escherichia coli

  • Yoon Sang-Hwal;Li Cui;Lee Young-Mi;Lee Sook-Hee;Kim Sung-Hee;Choi Myung-Suk;Seo Weon-Taek;Yang Jae-Kyung;Kim Jae-Yeon;Kim Seon-Won
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.4
    • /
    • pp.378-384
    • /
    • 2005
  • Vanillin is one of the world's principal flavoring compounds, and is used extensively in the food industry. The potential vanillin production of the bacteria was compared to select and clone genes which were appropriate for highly productive vanillin production by E. coli. The fcs (feruloyl-CoA synthetase) and ech (enoyl-CoA hydratase/aldolase) genes cloned from Amycolatopsis sp. strain HR104 and Delftia acidovorans were introduced to pBAD24 vector with $P_{BAD}$ promoter and were named pDAHEF and pDDAEF, respectively. We observed 160 mg/L vanillin production with E. coli harboring pDAHEF, whereas 10 mg/L of vanillin was observed with pDAHEF. Vanillin production was optimized with E. coli harboring pDAHEF. Induction of the fcs and ech genes from pDAHEF was optimized with the addition of 13.3 mM arabinose at 18 h of culture, from which 450 mg/L of vanillin was produced. The feeding time and concentration of ferulic acid were also optimized by the supplementation of $0.2\%$ ferulic acid at 18 h of culture, from which 500 mg/L of vanillin was obtained. Under the above optimized condition of arabinose induction and ferulic acid supplementation, vanillin production was carried out with four different types of media, M9, LB, 2YT, and TB. The highest vanillin production, 580 mg/L, was obtained with LB medium, a 3.6 fold increase in comparison to the 160 mg/L obtained before the optimization of vanillin production.