Production of Vanillin from Ferulic Acid Using Recombinant Strains of Escherichia coli

  • Yoon Sang-Hwal (Department of Food Science & Nutrition, Gyeongsang National University) ;
  • Li Cui (Department of Food Science & Nutrition, Gyeongsang National University) ;
  • Lee Young-Mi (Department of Food Science & Nutrition, Gyeongsang National University) ;
  • Lee Sook-Hee (Division of Applied Life Science (BK21), Gyeongsang National University) ;
  • Kim Sung-Hee (Department of Food Science & Nutrition, Gyeongsang National University) ;
  • Choi Myung-Suk (Division of Forest Science, Gyeongsang National University) ;
  • Seo Weon-Taek (Department of Food Science, Jinju National University) ;
  • Yang Jae-Kyung (Division of Forest Science, Gyeongsang National University) ;
  • Kim Jae-Yeon (Division of Applied Life Science (BK21), Gyeongsang National University, Environmental Biotechnology National Core Research Center, Gyeongsang National University) ;
  • Kim Seon-Won (Department of Food Science & Nutrition, Gyeongsang National University, Division of Applied Life Science (BK21), Gyeongsang National University)
  • Published : 2005.08.01

Abstract

Vanillin is one of the world's principal flavoring compounds, and is used extensively in the food industry. The potential vanillin production of the bacteria was compared to select and clone genes which were appropriate for highly productive vanillin production by E. coli. The fcs (feruloyl-CoA synthetase) and ech (enoyl-CoA hydratase/aldolase) genes cloned from Amycolatopsis sp. strain HR104 and Delftia acidovorans were introduced to pBAD24 vector with $P_{BAD}$ promoter and were named pDAHEF and pDDAEF, respectively. We observed 160 mg/L vanillin production with E. coli harboring pDAHEF, whereas 10 mg/L of vanillin was observed with pDAHEF. Vanillin production was optimized with E. coli harboring pDAHEF. Induction of the fcs and ech genes from pDAHEF was optimized with the addition of 13.3 mM arabinose at 18 h of culture, from which 450 mg/L of vanillin was produced. The feeding time and concentration of ferulic acid were also optimized by the supplementation of $0.2\%$ ferulic acid at 18 h of culture, from which 500 mg/L of vanillin was obtained. Under the above optimized condition of arabinose induction and ferulic acid supplementation, vanillin production was carried out with four different types of media, M9, LB, 2YT, and TB. The highest vanillin production, 580 mg/L, was obtained with LB medium, a 3.6 fold increase in comparison to the 160 mg/L obtained before the optimization of vanillin production.

Keywords

References

  1. Krings, U. and R. G. Berger (1998) Biotechnological production of flavours and fragrances. Appl. Microbiol. Biotechnol. 49: 1-8 https://doi.org/10.1007/s002530051129
  2. Lomascolo, A., C. Stentelaire, M. Asther, and L. Lesage- Meessen (1999) Basidiomycetes as new biotechnological tools to generate natural aromatic flavours for the food industry. Trends Biotechnol. 17: 282-289 https://doi.org/10.1016/S0167-7799(99)01313-X
  3. Lopez-Malo, A., S. Alzamora, and A. Agraiz (1995) Effect of natural vanillin on germination time and radial growth rate of moulds in fruit agar systems. Food Microbiol. 12: 213-219 https://doi.org/10.1016/S0740-0020(95)80100-6
  4. Cerrutti, P. and S. M. Alzamora (1996) Inhibitory effects of vanillin on some food spoilage yeasts in laboratory media and fruit purees. Int. J. Food. Microbiol. 29: 379-386 https://doi.org/10.1016/0168-1605(95)00026-7
  5. Cerrutti, P., S. M. Alzamora, and S. Vidales (1997) Vanillin as an antimicrobial for producing shelf-stable strawberry puree. J. Food Sci. 62: 608-610 https://doi.org/10.1111/j.1365-2621.1997.tb04442.x
  6. Burri, J., M. Graf, P. Lambelet, and J. Loiger (1989) Vanillin: More than a flavouring agent-a potent antioxidant. J. Sci. Food. Agric. 48
  7. Prince, R. C. and D. E. Gunson (1994) Just plain vanilla?. Trends Biochem. Sci. 19: 521 https://doi.org/10.1016/0968-0004(94)90049-3
  8. Lesage-Meessen, L., M. Delattre, M. Haon, J. F. Thibault, B. C. Ceccaldi, P. Brunerie, and M. Asther (1996) A twostep bioconversion process for vanillin production from ferulic acid combining Aspergillus niger and Pycnoporus cinnabarinus. J. Biotechnol. 50: 107-113 https://doi.org/10.1016/0168-1656(96)01552-0
  9. Cheetham, P. S. J. (1993) The use of biotransformations for the production of flavours and fragrances. Trends Biotechnol. 11: 478-488 https://doi.org/10.1016/0167-7799(93)90081-J
  10. Hagedorn, S. and B. Kaphammer (1994) Microbial biocatalysis in the generation of flavor and fragrance chemicals. Ann. Rev. Microbiol. 48: 773-800 https://doi.org/10.1146/annurev.mi.48.100194.004013
  11. Overhage, J., H. Priefert, J. Rabenhorst, and A. Steinbuchel (1999) Biotransformation of eugenol to vanillin by a mutant of Pseudomonas sp. strain HR199 constructed by disruption of the vanillin dehydrogenase (vdh) gene. Appl. Microbiol. Biotechnol. 52: 820-828 https://doi.org/10.1007/s002530051598
  12. Li, T. and J. P. Rosazza (2000) Biocatalytic synthesis of vanillin. Appl. Environ. Microbiol. 66: 684-687 https://doi.org/10.1128/AEM.66.2.684-687.2000
  13. Walton, N. J., A. Narbad, C. Faulds, and G. Williamson (2000) Novel approaches to the biosynthesis of vanillin. Curr. Op. Biotechnol. 11: 490-496 https://doi.org/10.1016/S0958-1669(00)00125-7
  14. Muheim, A. and K. Lerch (1999) Towards a high-yield bioconversion of ferulic acid to vanillin. Appl. Microbiol. Biotechnol. 51: 456-461 https://doi.org/10.1007/s002530051416
  15. Achterholt, S., H. Priefert, and A. Steinbuchel (2000) Identification of Amycolatopsis sp. strain HR167 genes, involved in the bioconversion of ferulic acid to vanillin. Appl. Microbiol. Biotechnol. 54: 799-807 https://doi.org/10.1007/s002530000431
  16. Peng, X., N. Misawa, and S. Harayama (2003) Isolation and characterization of thermophilic bacilli degrading cinnamic, 4-coumaric, and ferulic acids. Appl. Environ. Microbiol. 69: 1417-1427 https://doi.org/10.1128/AEM.69.3.1417-1427.2003
  17. Plaggenborg, R., A. Steinbuchel, and H. Priefert (2001) The coenzyme A-dependent, non-beta-oxidation pathway and not direct deacetylation is the major route for ferulic acid degradation in Delftia acidovorans. FEMS Microbiol. Lett. 205: 9-16
  18. Plaggenborg, R., J. Overhage, A. Steinbuchel, and H. Priefert (2003) Functional analyses of genes involved in the metabolism of ferulic acid in Pseudomonas putida KT2440. Appl. Microbiol. Biotechnol. 61: 528-535 https://doi.org/10.1007/s00253-003-1260-4
  19. Masai, E., K. Harada, X. Peng, H. Kitayama, Y. Katayama, and M. Fukuda (2002) Cloning and characterization of the ferulic acid catabolic genes of Sphingomonas paucimobilis SYK-6. Appl. Environ. Microbiol. 68: 4416-4424 https://doi.org/10.1128/AEM.68.9.4416-4424.2002
  20. Sutherland, J. B., D. L. Crawford, and A. L. Pometto 3rd (1983) Metabolism of cinnamic, p-coumaric, and ferulic acids by Streptomyces setonii. Can. J. Microbiol. 29: 1253-1257 https://doi.org/10.1139/m83-195
  21. Rabenhorst, J. and R. Hopp (1997) Verfahren zur Herstellung von Vanillin und dafur geeignete Mikroorganismen. German Patent EP0761817A2
  22. Muheim, A., B. Muller, T. Munch, and M. Wetli (1998) Process for the production of vanillin. German Patent EP0885968A1
  23. Choi, J. I., S. Y. Lee, K. S. Shin, W. G. Lee, S. J. Park, H. N. Chang, and Y. K. Chang (2002) Pilot scale production of poly(3-hydroxybutyrate-co-3-hydroxy-valerate) by fedbatch cultrue of recombinant Escherichia coli. Biotechnol. Bioprecess Eng. 7: 371-374 https://doi.org/10.1007/BF02933524
  24. Choi, J. I. and S. Y. Lee (2004) High level prodcution of supra molecular weight poly(3-hydroxybutryrate) by metabolically engineered Escherichia coli. Biotechnol. Bioprecess Eng. 9: 196-200 https://doi.org/10.1007/BF02942292
  25. Kim, J. Y. and D. Y. Ryu (1999) Physiological and environmental effects on metabolic flux change caused by heterologous gene expression in Escherichia coli. Biotechnol. Bioprocess Eng. 4: 170-175 https://doi.org/10.1007/BF02931923
  26. Hopwood, D. A., M. J. Bibb, K. F. Chater, T. Kieser, C. J. Bruton, H. M. Kieser, D. J. Lydiate, C. P. Smith, J. M. Simth, J. M. Ward, and H. S. Schrempf (1985) Genetic Manipulation of Streptomycetes: A Laboratory Manual. John Innes Institute, Norwich, UK
  27. Sambrook, J. and D. W. Russell (2001) Molecular Cloning. 3nd ed., Cold Spring Harbor Laboratory Press, NY, USA
  28. Guzman, L. M., D. Belin, M. J. Carson, and J. Beckwith (1995) Tight regulation, modulation, and high-level expression by vectors containing the arabinose $P_{BAD}$ promoter. J. Bacteriol. 177: 4121-4130 https://doi.org/10.1128/jb.177.14.4121-4130.1995
  29. Gasson, M. J., Y. Kitamura, W. R. McLauchlan, A. Narbad, A. J. Parr, E. L. Parsons, J. Payne, M. J. Rhodes, and N. J. Walton (1998) Metabolism of ferulic acid to vanillin. A bacterial gene of the enoyl-SCoA hydratase/isomerase superfamily encodes an enzyme for the hydration and cleavage of a hydroxycinnamic acid SCoA thioester. J. Biol. Chem. 273: 4163-4170 https://doi.org/10.1074/jbc.273.7.4163
  30. Andreoni, V., E. Galli, and G. Galliani (1984) Metabolism of ferulic acid by a facultatively anaerobic strain of Pseudomonas cepacia. Syst. Appl. Microbiol. 5: 299-304 https://doi.org/10.1016/S0723-2020(84)80032-6
  31. Otuk, G. (1985) Degradation of ferulic acid by Escherichia coli. J. Ferment. Technol. 63: 501-506
  32. Gurujeyalakshmi, G. and A. Mahadevan (1987) Dissimilation of ferulic acid by Bacillus subtilis. Curr. Microbiol. 16: 69-73 https://doi.org/10.1007/BF01588174
  33. Matamoros-Leon, B., A. Argaiz, and A. Lopez-Malo (1999) Individual and combined effects of vanillin and potassium sorbate on Penicillium digitatum, Penicillium glabrum, and Penicillium italicum growth. J. Food Prot. 62: 540-542
  34. Zaldivar, J., A. Martinez, and L. O. Ingram (1999) Effect of selected aldehydes on the growth and fermentation of ethanologenic Escherichia coli. Biotechnol. Bioeng. 65: 24-33 https://doi.org/10.1002/(SICI)1097-0290(19991005)65:1<24::AID-BIT4>3.0.CO;2-2