• Title/Summary/Keyword: Ferromagnetic

Search Result 967, Processing Time 0.024 seconds

Quantitative Approach to the Magnetic Force of a Cylindrical Permanent Magnet Acting on a Ferromagnetic Object (원형 막대자석이 강자성 물체에 작용하는 자기력에 대한 정량적 접근)

  • Hyun, Donggeul;Shin, Aekyung
    • New Physics: Sae Mulli
    • /
    • v.68 no.11
    • /
    • pp.1249-1261
    • /
    • 2018
  • The quantitative representation for the magnetic force of a cylindrical permanent magnet acting on a ferromagnetic cylindrical object was derived on the basis of magnetization theories, and the Gilbert and Ampere models of magnetism. The magnetic force derived in this study is directly proportional to the remanent magnetization magnetic field, the cross-sectional area of the permanent magnet, the saturation magnetic field, and the cross-sectional area of the ferromagnetic object and is inversely proportional to the square of the quantity related to the distance between the permanent magnet and the ferromagnetic object. The magnetic forces of an AlNiCoV cylindrical permanent magnet and a Ferrite cylindrical permanent magnet, both with a radius of 0.4 cm and a length of 7 cm, acting on ferromagnetic objects at distances farther than the radius were calculated to be less than 3.6711 N and 0.1857 N, respectively.

Room-Temperature Ferromagnetic Behavior in Ferroelectric BiFeO3-BaTiO3 System Through Engineered Superexchange Path (초교환 상호작용 제어를 통해 강유전 BiFeO3-BaTiO3 시스템에서 유도된 상온 강자성 거동)

  • Ko, Nu-Ri;Cho, Jae-Hyeon;Jang, Jongmoon;Jo, Wook
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.5
    • /
    • pp.386-392
    • /
    • 2021
  • Multiferroics exhibiting the coexistence and a possible coupling of ferromagnetic and ferroelectric order are attracting widespread interest in terms of academic interests and possible applications. However, room-temperature single-phase multiferroics with soft ferromagnetic and displacive ferroelectric properties are still rare owing to the contradiction in the origin of ferromagnetism and ferroelectricity. In this study, we demonstrated that sizable ferromagnetic properties are induced in the ferroelectric bismuth ferrite-barium titanate system simply by introducing Co ions into the A-site. It is noted that all modified compositions exhibit well-saturated magnetic hysteresis loops at room temperature. Especially, 70Bi0.95Co0.05FeO3-30Ba0.95Co0.05TiO3 manifests noticeable ferroelectric and ferromagnetic properties; the spontaneous polarization and the saturation magnetization are 42 µC/cm2 and 3.6 emu/g, respectively. We expect that our methodology will be widely used in the development of perovskite-structured multiferroic oxides.

Drone based Magnetic Anomaly Detection to detect Ferromagnetic Target (강자성 표적 탐지를 위한 드론 기반 자기 이상 탐지)

  • Sin Hyuk Yim;Dongkyu Kim;Ji Hun Yoon;Bona Kim;Eun Seok Bang;Kyu Min Shim;Sangkyung Lee;Jong-shick Oh
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.26 no.4
    • /
    • pp.335-343
    • /
    • 2023
  • Drone based Magnetic Anomaly Detection measure a magnetic anomaly signal from the ferromagnetic target on the ground. We conduct a magnetic anomaly detection with 9 ferromagnetic targets on the ground. By removing the magnetic field measured in the absence of ferromagnetic targets from the experimental value, the magnetic anomaly signal is clearly measured at an altitude of 100 m. We analyze the signal characteristics by the ferromagnetic target through simulation using COMSOL multiphysics. The simulation results are within the GPS error range of the experimental results.

A Study on the magnetization of metal orthopedic prosthesis in magnetic resonance imaging (자기공명 영상장치에서 정형보철금속의 자화(磁化)에 관한 연구)

  • Kim, Hyeong-Gyun;Song, Duk-Chung;Choi, Seong-Dae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.4
    • /
    • pp.34-39
    • /
    • 2013
  • For orthopedic artificial metal stainless steel, the magnetization of the magnetic field due to the presence of the titanium was to observe the change. Magnetic field meter (Tesla meters) a certain distance (ISO Centre) 1.5 Tesla magnetic field, the magnetization in the center with the passage of time were measured. Therefore, these artificial metal clip shape and magnetization of the sample size to produce a ferromagnetic material for comparison is the experimental dependence. For comparison of the experimental dependence of the magnetization, thereby producing a test piece size such as shaping prosthetic metal Clip is a ferromagnetic material. The experimental results, the metal orthopedic implants, there was no change in the magnetization indicated by ferromagnetic material in its natural state. However, in a magnetic field of 1.5T (Tesla), showed a sensitivity that is magnetized rapidly compared to the ferromagnetic material. In conclusion, high in the order of Clip, Stainless, of Titanium, the degree of dependence of the magnetization intensity of magnetization was the order Stainless, Titanium, of Clip in a magnetic field.

Ferromagnetic Resonance and X-Ray Reflectivity Studies of Pulsed DC Magnetron Sputtered NiFe/IrMn/CoFe Exchange Bias

  • Oksuzoglu, Ramis Mustafa;Akman, Ozlem;Yildirim, Mustafa;Aktas, Bekir
    • Journal of Magnetics
    • /
    • v.17 no.4
    • /
    • pp.245-250
    • /
    • 2012
  • Ferromagnetic resonance and X-ray specular reflectivity measurements were performed on $Ni_{81}Fe_{19}/Ir_{20}Mn_{80}/Co_{90}Fe_{10}$ exchange bias trilayers, which were grown using the pulsed-DC magnetron sputtering technique on Si(100)/$SiO_2$(1000 nm) substrates, to investigate the evolution of the interface roughness and exchange bias and their dependence on the NiFe layer thickness. The interface roughness values of the samples decrease with increasing NiFe thickness. The in-plane ferromagnetic resonance measurements indicate that the exchange bias field and the peak-to-peak line widths of the resonance curves are inversely proportional to the NiFe thickness. Furthermore, both the exchange bias field and the interface roughness show almost the same dependence on the NiFe layer thickness. The out-of plane angular dependent measurements indicate that the exchange bias arises predominantly from a variation of exchange anisotropy due to changes in interfacial structure. The correlation between the exchange bias and the interface roughness is discussed.

Design of Control System for All-Metal Domestic Induction Heating Considering Temperature and Quick-Response (워킹코일 온도 및 제어 속응성을 고려한 All-Metal Domestic Induction Heating 제어 시스템 설계)

  • Park, Sang-Min;Jang, Eun-Su;Joo, Dong-Myoung;Lee, Byoung-Kuk
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.3
    • /
    • pp.199-207
    • /
    • 2018
  • In this paper, an all-metal domestic induction heating (IH) system that can quickly identify ferromagnetic and non-ferromagnetic pots considering temperature changes in the working coil is designed. Load modeling is performed after analyzing the parameters of the pot material and the central misalignment of the working coil. To improve the performance and stability of the all-metal IH cooking heater, a power curve-fitting model is used to design a control system that quickly responds to load parameter fluctuations. In addition, a power control algorithm is established to compensate for the reference value by reflecting the increase in working coil temperature during heating of the non-ferromagnetic pot. The validity of the proposed control algorithm for the all-metal IH is verified by experiments using a 3.2 kW all-metal IH cooking heater.

Nondestructive Evaluation of 2-Dimensional Surface Crack in Ferromagnetic Metal and Paramagnetic Metal by ICFPD Technique (집중유도형 교류전위차법에 의한 강자성체 및 상자성체의 2차원 표면결함의 비파괴평가)

  • 김훈;장자철웅;정세희
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.5
    • /
    • pp.1202-1210
    • /
    • 1995
  • Aiming at nondestructive evaluation of defect with high accuracy and resolution, ICFPD(Induced Current Focusing Potential Drop) technique was newly developed. This technique can be applied for locating and sizing of defects in components with not only simple shape such as plain surface but also more complex shape and geometry such as curved surface and dissimilar joing. This paper describes the principle of ICFPD technique and also the results of 2-dimensional surface crack in ferromagnetic metal(A508 Cl. III steel) and paramagnetic metal (pure aluminum and stainless 304 steel) measured by this technique. Results are that surface defects in each specimen are detected with the difference of potential drop, and potential drops are distributed a similar shape for each metal and each depth. The normalized potential drop ( $V_{\delta}$2/$^{t}$ / $V_{{\delta} 2}$$^{-1}$) max. in the vicinity of defect is varied with the depth of defect. Therefore, ICFPD technique can be used for the evaluation of defect not only in ferromagnetic metal but also in paramagnetic steel..

First-principle Study for AlxGa1-xP and Mn-doped AlGaP2 Electronic Properties

  • Kang, Byung-Sub;Song, Kie-Moon
    • Journal of Magnetics
    • /
    • v.20 no.4
    • /
    • pp.331-335
    • /
    • 2015
  • The ferromagnetic and electronic structure for the $Al_xGa_{1-x}P$ and Mn-doped $AlGaP_2$ was studied by using the self-consistent full-potential linear muffin-tin orbital method. The lattice parameters of un-doped $Al_xGa_{1-x}P$ (x = 0.25, 0.5, and 0.75) were optimized. The band-structure and the density of states of Mn-doped $AlGaP_2$ with or without the vacancy were investigated in detail. The P-3p states at the Fermi level dominate rather than the other states. Thus a strong interaction between the Mn-3d and P-3p states is formed. The ferromagnetic ordering of dopant Mn with high magnetic moment is induced due to the (Mn-3d)-(P-3p)-(Mn-3d) hybridization, which is attributed by the partially filled P-3p bands. The holes are mediated with keeping their 3d-characters, therefore the ferromagnetic state is stabilized by this double-exchange mechanism.