Browse > Article
http://dx.doi.org/10.3938/NPSM.68.1249

Quantitative Approach to the Magnetic Force of a Cylindrical Permanent Magnet Acting on a Ferromagnetic Object  

Hyun, Donggeul (Department of Science Education, Teachers' College, Jeju National University)
Shin, Aekyung (Department of Science Education, Teachers' College, Jeju National University)
Abstract
The quantitative representation for the magnetic force of a cylindrical permanent magnet acting on a ferromagnetic cylindrical object was derived on the basis of magnetization theories, and the Gilbert and Ampere models of magnetism. The magnetic force derived in this study is directly proportional to the remanent magnetization magnetic field, the cross-sectional area of the permanent magnet, the saturation magnetic field, and the cross-sectional area of the ferromagnetic object and is inversely proportional to the square of the quantity related to the distance between the permanent magnet and the ferromagnetic object. The magnetic forces of an AlNiCoV cylindrical permanent magnet and a Ferrite cylindrical permanent magnet, both with a radius of 0.4 cm and a length of 7 cm, acting on ferromagnetic objects at distances farther than the radius were calculated to be less than 3.6711 N and 0.1857 N, respectively.
Keywords
Magnetic force; Permanent magnet; Ferromagnetic object; AlNiCoV cylindrical magnet; Ferrite cylindrical magnet;
Citations & Related Records
연도 인용수 순위
  • Reference
1 E-magnet, http://www.e-magnet.cn/MATS-2010H_RHG_6.html (accessed Jun. 19, 2018).
2 Allmagnet, http://www.allmagnet.co.kr (accessed May 16, 2018).
3 Magnet1000, http://www.magnet1000.co.kr/homepage/goods/technote.php (accessed May 16, 2018).
4 Hsmagnets, http://www.hsmagnets.com/support/magnetic-properties (accessed May 16, 2018).
5 Mechapia, http://mechapia.com/dictionary/dictionary_main.php (accessed May 16, 2018).
6 Cutwire, http://www.cutwire.co.kr/db_steel/490(accessed May 10, 2018).
7 Itacanet, http://www.itacanet.org/basic-electricalengineering/part-5-magnetic-materials (accessed May 16, 2018).
8 Patents, https://patents.google.com/patent/US4947524 (accessed May 26, 2018).
9 D. Halliday, R. Resnick and J. Walker, Fundamentals of Physics, 6th ed. (John Wiley and Sons, Inc.; Korean language ed., Bumhan Publishers Co., Ltd., Seoul, 2009), pp. 447-547.
10 R. A. Serway and J. W. Jewett, Physics for Scientists and Engineers with Modern Physics, 7th ed. (Cengage Learning Korea Limited and Book's Hill Publishers Co., Ltd., Seoul, 2009), pp. 679-822.
11 Slideshare, https://www.slideshare.net/AdityaNarayanOjha/4-magnetism (accessed May 22, 2018).
12 E. P. Furlani, S. Reznik and A. Kroll, IEEE Trans. Magn. 31, 844 (1995).   DOI
13 S. I. Babic and C. Akyel, IEEE Trans. Magn. 44, 445 (2008).   DOI
14 En.wikipedia, http://en.wikipedia.org/wiki/Force_between_magnet (accessed April 22, 2018).
15 D. Vokoun, M. Beleggia, L. Heller and P. Sittner, J. Magn. Magn. Mater. 321, 3758 (2009).   DOI
16 J. Kim, Kor. J. Met. Mater. 49, 85 (2011).   DOI
17 J. Lee, J. Yu, H. Kim and T. Jang, J. Kor. Magn. Soc. 22, 58 (2012).   DOI
18 S. Namkung, S. Cho and J. Kim, J. Kor. Magn. Soc. 22, 221 (2012).   DOI
19 J. Hong, J. Kor. Magn. Soc. 22, 188 (2012).   DOI
20 I. Ahn, Y. Moon, J. Lee, J. Park, J. Lee and K. Woo, J. Contr. Automat. Syst. Eng. 3, 67 (1997).
21 R. Ravaud, G. Lemarquand, S. Babic, V. Lemarquand and C. Akyel, IEEE Trans. Magn. 46, 3585 (2010).   DOI
22 D. Hyun and S. Park, School Sci. J. 8, 62 (2014).   DOI
23 S. Park and D. Hyun, New Phys.: Sae Mulli 64, 405 (2014).   DOI
24 K. Oh and J. Park, J. Res. Curri. Instr. 12, 637 (2008).
25 S. Kim and D. Hyun, New Phys.: Sae Mulli 65, 797 (2015).   DOI
26 D. Hyun, S. Kim, A. Shin and S. Park, New Phys.: Sae Mulli 65, 1086 (2015).   DOI
27 B. Choi and Y. Jhun, New Phys.: Sae Mulli 68, 196 (2018).   DOI
28 D. Hyun and H. Jho, New Phys.: Sae Mulli 67, 975 (2017).   DOI
29 Ministry of Education, The 2015 Revised Science Curriculum (Seoul, MOE, 2015), No. 2015-74.
30 Z. Popovic and B. D. Popovic, Introductory Electromagnetics, corrected ed. (Prentice Hall, Inc., New Jersey, 2000), pp. 278-298.
31 M. N. O. Sadiku, Elements of Electromagnetics, 3rd ed. (Oxford Univ. Press, London, 2001), pp. 304-366.
32 J. R. Reitz, F. J. Milford and R. W, Christy, Foundations of Electromagnetic Theory, 3rd ed. (Addison-Wesley Publishing Co., Inc., Massachusetts, 1979), pp. 250-264.
33 D. J. Griffiths, Introduction to Electrodynamics, 3th ed. (Prentice-Hall, Inc.; Korean language ed., Jinseam Media Publishers Co., Ltd., Seoul, 1999), pp. 264-294.
34 D. Hyun, A. Shin and S. Park, School Sci. J. 9, 50 (2015).
35 R. K. Wangsness, Electromagnetic Fields, 2nd ed. (John Wiley and Sons, Inc., 1986; Korean language ed., Chungbum Publishing Co., Ltd, Seoul, 2006), pp. 367-409.
36 W. H. Hayt, Jr. and J. A. Buck, Engineering Electromagnetics, 8th ed. (McGraw-Hill Education Korea, Ltd., Korean Language ed., Seoul, 2012), pp. 241-288.
37 Allaboutcircult, https://www.allaboutcircuits.com/textbook/direct-current/chpt-14/permeability-and-saturation (accessed May 12, 2018).