• Title/Summary/Keyword: Ferritic/martensitic

Search Result 62, Processing Time 0.026 seconds

Evolution on Microstructures and Tensile Properties of 10Cr-1Mo ODS Steel with Different Lengths of Mechanical Alloying Process Times (10Cr-1Mo 산화물 분산강화 강의 미세조직과 인장특성에 미치는 기계적 합금화 공정시간의 영향)

  • Noh, Sanghoon;Kim, Tae Kyu
    • Journal of Powder Materials
    • /
    • v.28 no.5
    • /
    • pp.375-380
    • /
    • 2021
  • In this study, we investigate the effect of the duration of mechanical alloying on the microstructures and mechanical properties of ODS ferritic/martensitic steel. The Fe(bal.)-10Cr-1Mo pre-alloyed powder and Y2O3 powder are mechanically alloyed for the different mechanical alloying duration (0 to 40 h) and then constantly fabricated using a uniaxial hot pressing process. Upon increasing the mechanical alloying time, the average powder diameter and crystallite size increased dramatically. In the initial stages within 5 h of mechanical alloying, inhomogeneous grain morphology is observed along with coarsened carbide and oxide distributions; thus, precipitate phases are temporarily observed between the two powders because of insufficient collision energy to get fragmented. After 40 h of the MA process, however, fine martensitic grains and uniformly distributed oxide particles are observed. This led to a favorable tensile strength and elongation at room temperature and 650℃.

Weldability of Low-Carbon ASTM A356 CA6NM Martensitic Stainless Steel Casting for Power Plants (발전용 저탄소 ASTM A356 CA6NM 마르텐사이트계 스테인리스 주강의 용접성)

  • Bang, Kook-soo;Park, Chan;Lee, Joo-young;Lee, Kyong-woon
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.1
    • /
    • pp.73-78
    • /
    • 2011
  • Weldability, especially HAZ cold cracking, weld metal solidification cracking, and HAZ liquation cracking susceptibilities, of ASTM A356 CA6NM martensitic stainless steel casting was investigated and compared with that of 9-12% Cr ferritic steel castings. Irrespective of the Cr and Ni content in the castings, the HAZ maximum hardness increased with an increase of carbon content. CA6NM steel, which has the lowest carbon content, had the lowest HAZ hardness and showed no cold cracking in y-slit cracking tests. CA6NM steel, meanwhile, showed the largest weld metal solidification cracking susceptibility in varestraint tests because of its higher amount of impurity elements, phosphorus, and sulfur. All castings investigated had good high temperature ductility in hot ductility tests and showed little difference in liquation cracking susceptibility.

A study on Mechanical and Fatigue Properties of Spheroidal Graphite Cast Iron (구상흑연주철의 기계적 성질및 피로특성에 관한 연구)

  • Park, No-Gwang;Kim, Chang-Ju;Jun, Eui-Jin
    • 한국기계연구소 소보
    • /
    • s.9
    • /
    • pp.83-93
    • /
    • 1982
  • The influence of different heat treatment conditions on microstructure, mechanical and fatigue properties of Spheroidal Graphite cast Iron with 0.4-0.6% Mn was investigated. 1) Maximum tensile strength was arrived by tempering at about $450^{\circ}C$after quenching. Tempering at higher than $600^{\circ}C$ was changed martensitic structure to ferritic structure and secondary graphites were precipitated. 2) The relationship between matrix hardness and total hardness of the specimens are as following. [HB]$T$=0.7[HB] [HB]$M$+35 Maximum tensile strength was arrived at the total hardness of HB400-450. 3) Endurance ratio decreases with increasing total hardness, and fatigue limits can be presumed from as following. $\sigmaf$=$\sigmat$

  • PDF

Effect of the Microstructure of Gray Cast Iron Disk on Friction Characteristics (자동차용 브레이크 로터의 재료로 사용되는 회주철의 미세구조에 따른 마찰특성에 관한 연구)

  • Cho, Min-Hyung;Jang, Ho
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.06a
    • /
    • pp.240-246
    • /
    • 1999
  • The effect of microstructure of gray cast iron disk was investigated by using a pad-on-disk type friction tester. Three different rotors with different microstructures were studied in this work. They showed a pearlitic matrix, a ferritic matrix, and a martensitic structure, respectively. All of them have graphite flakes in common. Drag tests at different pressure and speed conditions were carried out to study friction stability, temperature rise during drags. The rotor containing pearlitic matrix showed lower values of friction coefficient, small amount of temperature rise, and less fading. The results showed that gray cast iron disk containing pearlitic matrix has good friction characteristics.

  • PDF

FUSION MATERIALS AND FUSION ENGINEERING R&D IN JAPAN

  • KOHYAMA A.;KONISHI S.;KIMURA A.
    • Nuclear Engineering and Technology
    • /
    • v.37 no.5
    • /
    • pp.423-432
    • /
    • 2005
  • Japanese activities on fusion structural materials R&D have been well organized under the coordination of university programs and JAERI/NIMS programs more than two decades. Where, two categories of structural materials have been studied, those are; reduced activation martensitic/ferritic steels (RAFs) as reference material and vanadium alloys and SiC/SiC composite materials as advanced materials. The R&D histories of these candidate materials and the present status in Japan are reviewed with the emphasis on materials behavior under radiation damage. The importance of IFMIF and technology development for blanket R&D including ITER-TBRG activity is emphasized and the current status of those activities in Japan is also presented.

Fatigue Damage Behavior in TIG Welded Joint of F82H Steel under Low Cycle Fatigue Loading (저주기 피로부하에서 F82H 강 TIG 용접 접합부의 피로손상거동)

  • Kim, Dong-Hyun;Park, Ki-Won
    • Journal of Welding and Joining
    • /
    • v.33 no.6
    • /
    • pp.42-48
    • /
    • 2015
  • Reduced activation ferritic/martensitic steels are recognized as the primary candidate structural materials for fusion blanket systems. Welding is an inevitable for breeding blanket for pressure tightness and radioisotope confinement. Especially, TIG welding was chosen for sealing because it has the largest gap allowance compared to the other welding methods, and its properties are controllable by feed wire and welding conditions. In this study, the low cycle fatigue test using two-type gage such as extensometer and strain gage was applied to the TIG welded joint of F82H steel, for evaluating fatigue damage accumulation behavior of the HAZs. As the result, the over-tempered HAZ have shown a higher fatigue damage accumulation compared with other materials at all the testing conditions.

Estimation of fracture toughness and characteristics of stretched zone formation in dual phase steel (複合組織鋼의 破壞靭性 評價와 스트렛치죤의 特性)

  • 김정규;오재민
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.5
    • /
    • pp.680-688
    • /
    • 1986
  • In order to obtain the optimal estimation method of fracture toughness of dual phase steel in which martensitic phase encapsulated islands of ferritic phase, the stretched zone (SZ) method and the R-curve method of the JSME S 001 was discussed. The results obtained are as follows. (1) The $J_{IC}$ values estimated by the SZ method are overestimated as compared with those by the R-curve method. (2) The $J_{IC}$ by the R-curve method decreases with the increase of the ferrite grain size and the martensite hardness. (3) The overestimation of $J_{IC}$ by the SZ method is due to the continuous plastic blunting of ferrite after the formation of stable crack which affects the critical stretched zone width.

Effects of Low Temperature Plasma Nitriding Treatment on Mechanical Properties of Stainless Steel (스테인리스강의 기계적 성질에 미치는 저온 플라즈마 질화처리조건의 영향)

  • Bin, Jeonguk;Kim, Hangoon
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.23 no.5
    • /
    • pp.269-276
    • /
    • 2010
  • This study has been carried out to the low temperature plasma nitriding treatment on the mechanical properties of stainless steel at temperature range between $400^{\circ}C$ and $500^{\circ}C$. It was found that there was precipitated to free CrN matrix below $400^{\circ}C$ and there was precipitated S-phase of STS 316L, ${\varepsilon}$-phase of STS 409L and ${\alpha}N$-phase of STS 420J2. STS 316L has formed relatively abundant CrN phase and ${\gamma}^{\prime}-Fe_4N$ phase at $500^{\circ}C$, alternatively STS 409L and STS 420J2 were more deeply nitrided than STS 316L at $500^{\circ}C$.

Effects of Low Temperature Plasma Nitriding Treatment on Corrosion behavior of Stainless Steel (스테인리스강의 내식성에 미치는 저온 플라즈마 질화의 영향)

  • Kim, H.G.;Bin, J.U.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.24 no.1
    • /
    • pp.3-9
    • /
    • 2011
  • Plasma nitriding of stainless steels has been investigated over a range of temperature from 400 to $500^{\circ}C$ and time from 10 to 20 hours. Characterization of systematic materials was carried out in terms of mechanical properties and corrosion behaviors. The results showed that plasma nitriding conducted at low temperatures not only increased the surface hardness, but also improved the corrosion resistance of STS 316L, STS409L, and STS 420J2. It was found that plasma-nitriding treatment at $500^{\circ}C$ resulted in increasing the corrosion performance of STS 409L and STS 420J2, while STS 316L was observed with server and massive damage on surface due to the formation of CrN.

Corrosion Prevention of Cr steels in $SO_2$ Atmosphere for Electrial Power Plants (화력발전소의 장수명화를 위한 Cr 강(鋼)의 고온 $SO_2$가스 부식저감 대책 기술)

  • Lee, Dong-Bok;Choe, Jeong-Ho
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2007.04a
    • /
    • pp.114-115
    • /
    • 2007
  • The corrosion characteristics of Cr steels were investigated to protect Cr steels from the SO2-gas corrosion in the coal-fired power plant. The samples tested were low alloy ferritic steel (ASTM T22, 23), martensitic steel (ASTM T91, 92, 122), and austenitic stainless steel (ASTM 347HFG). The corrosion tests were performed between 600oC and 1000oC in Ar + (0.2, 1)%SO2 gas for 100 hr. Chromium was quite beneficial to corrosion resistance, while iron was not. The corrosion resistance increased in the order of T22, T23, T91, T92, T122, and 347HFG.

  • PDF