• 제목/요약/키워드: Ferrite stainless steel

검색결과 154건 처리시간 0.024초

슈퍼듀플렉스 스테인리스강 UNS S32750과 탄소강 A516-70의 이종금속 FCA 용접 특성에 대한 연구 (A Study on Characteristics of Dissimilar Welds between Super Duplex Stainless Steel UNS S32750 and Carbon Steel A516-70 with FCAW)

  • 문인준;장복수;김세철;고진현
    • Journal of Welding and Joining
    • /
    • 제32권4호
    • /
    • pp.26-33
    • /
    • 2014
  • The metallurgical and mechanical characteristics, toughness and corrosion resistance of dissimilar welds between super duplex stainless steel UNS S32750 and carbon steel ASTM A516Gr.70 have been evaluated. Three heat inputs of 21.12, 24.00, 26.88kJ/cm were employed to make joints of dissimilar metals with flux cored arc welding(FCAW). Based on microstructural examination, vermicular ferrite was formed in the first layer of weld at low heat input(21.12kJ/cm) and $Cr_{eq}/Ni_{eq}$ of 1.61 while acicular ferrite was formed in last layer of weld at high heat input(26.88kJ/cm) and $Cr_{eq}/Ni_{eq}$ of 1.72. Ferrite percentage in dissimilar welds was lowest in the first layer of weld regardless of heat inputs and it gradually increased in the second and third layers of weld. Heat affected zone showed higher hardness than the weld metal although reheated zone showed lower hardness than weld metal due to the formation of secondary austenite. Tensile strengths of dissimilar welds increased with heat input and there was 100MPa difference. The corrosion test by ferric chloride solution showed that carbon steel had poor corrosion resistance and pitting corrosion occurred in the first layer(root pass) of weld due to the presence of reheated zone where secondary austenite was formed. The salt spray test of carbon steel showed that the surface only corroded but the amount of weight loss was extremely low.

주조 오스테나이트 스테인리스강의 열취화 활성화에너지 분석 (Analysis of Activation Energy of Thermal Aging Embrittlement in Cast Austenite Stainless Steels)

  • 이경근;홍석민;김지수;안동현;김종민
    • 한국압력기기공학회 논문집
    • /
    • 제20권1호
    • /
    • pp.56-65
    • /
    • 2024
  • Cast austenitic stainless steels (CASS) and austenitic stainless steel weldments with a ferrite-austenite duplex structure are widely used in nuclear power plants, incorporating ferrite phase to enhance strength, stress relief, and corrosion resistance. Thermal aging at 290-325℃ can induce embrittlement, primarily due to spinodal decomposition and G-phase precipitation in the ferrite phase. This study evaluates the effects of thermal aging by collecting and analyzing various mechanical properties, such as Charpy impact energy, ferrite microhardness, and tensile strength, from various literature sources. Different model expressions, including hyperbolic tangent and phase transformation equations, are applied to calculate activation energy (Q) of room-temperature impact energies, and the results are compared. Additionally, predictive models for Q based on material composition are evaluated, and the potential of machine learning techniques for improving prediction accuracy is explored. The study also examines the use of ferrite microhardness and tensile strength in calculating Q and assessing thermal embrittlement. The findings provide insights for developing advanced prediction models for the thermal embrittlement behavior of CASS and the weldments of austenitic steels, contributing to the safety and reliability of nuclear power plant components.

슈퍼 듀플렉스 내식강의 부식특성 및 경도에 미치는 텅스텐 첨가의 영향 (Influence of W Additions on the Corrosion Characteristics and Hardness of Super Duplex Stainless Steel)

  • 한윤기;김정민
    • 열처리공학회지
    • /
    • 제36권5호
    • /
    • pp.261-269
    • /
    • 2023
  • This study aims to investigate the effects of tungsten additions on the microstructure, corrosion characteristics, and hardness of super duplex stainless steel heat-treated at two different annealing temperatures. Under the annealing temperature of 1100℃, the microstructure of the stainless steels consisted mainly of ferrite, while under the annealing temperature of 1000℃, significant amounts of austenite and secondary phases were also observed. In terms of corrosion characteristics in 3.5 wt%NaCl solution, there was not a significant difference due to W addition at the 1100℃ conditions. However, at the 1000℃, a tendency of decreased corrosion resistance was observed with increasing the tungsten content. On the other hand, the micro-hardness of the stainless steel heat-treated 1000℃ showed an increasing trend with tungsten addition. This increase can be mainly attributed to the higher fraction of secondary phases, primarily sigma, known for their high hardness.

22Cr 린 듀플렉스 스테인리스강의 공식저항성에 미치는 Mn과 Ni 첨가의 영향 (Effect of Alloying Elements of Mn and Ni on the Pitting Corrosion Resistance of 22Cr Lean Duplex Stainless Steel)

  • 안용식;배근국
    • 동력기계공학회지
    • /
    • 제16권5호
    • /
    • pp.76-82
    • /
    • 2012
  • Duplex stainless steels have the dual microstructure of austenite and ferrite phases. This steel exhibits generally a high corrosion resistance and higher mechanical strength compared with austenitic stainless steels. The steels used in the investigation have the chemical composition of Fe-22Cr-xNi-yMn-0.2N in which the contents of Ni and Mn were varied with maintaining the equal [Ni/Cr] equivalent. The fraction of ferrite phase was increased with the increase of annealing temperature. The impact factor of Mn element on the [Ni] equivalent was amended on the basis of the results of the investigation. 4Mn-2Ni alloy showed the highest pitting corrosion resistance. The fraction ratio, grain size and misorientation angle between grains were measured, and the correlation with pitting potential was investigated.

Effect of Cu Addition on the Properties of Duplex Stainless Steels

  • Hwangbo, D.;Yoo, Y.R.;Choi, S.H.;Choi, S.J.;Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • 제21권4호
    • /
    • pp.273-281
    • /
    • 2022
  • The effect of addition of Cu on the localized corrosion performance of aged duplex stainless steel in chloride media has yet to be explained in a consistent manner, and there is some controversy in the literature regarding the composition of stainless steel and the experimental conditions (pH, temperature, chloride concentration, etc.) used. In this work, the effect of the addition of Cu on the microstructure, hardness, and corrosion resistance of duplex stainless steel in an acidic chloride or high concentration sulfuric acid solutions was investigated for annealed and aged alloys. The Cu addition of annealed duplex stainless steel strengthened the alloy and reduced the ferrite contents of the alloy, and it also increased the polarization behavior in chloride or sulfuric solutions, except for the case of a high potential in acidic chloride solution. However, the Cu addition of aged duplex stainless steel reduced the formation of harmful phases such as sigma and kai and increased the polarization behavior in acidic chloride or sulfuric solutions up to 0.8 wt% of the Cu content, after which it slightly decreased at 0.8 wt% Cu or more.

오스테나이트계 스테인리스강 용접부의 금속학적 현상에 관한 연구(2) - STS 304 용접부 조직특성 및 고온균열 감수성에 미치는 질소의 영향 - (A Study of Weld Fusion Zone Phenomena in Austenitic Stainless Steels(2) - Effects of Nitrogen on Microstructural Evolution and Hot Cracking Susceptibility GTA Welds in STS 304 -)

  • 이종섭;김숙환
    • Journal of Welding and Joining
    • /
    • 제18권1호
    • /
    • pp.59-69
    • /
    • 2000
  • The purpose of the present study was to investigate weld metallurgical phenomena such as primary solidification mode, microstructural evolution and hot cracking susceptibility in nitrogen-bearing austenitic stainless steel GTA welds. Eight experimental heats varying nitrogen content from 0.007 to 0.23 wt.% were used in this study. Autogenous GTA welding was performed on weld coupons and the primary solidification mode and their microstructural characteristics were investigated from the fusion welds. Varestraint test was employed to evaluate the solidification cracking susceptibility of the heats and TCL(Total Crack Length) was used as cracking susceptibility index. The solidification mode shifted from primary ferrite to primary austenite with an increase in nitrogen content. Retained delta ferrite exhibited a variety of morphology as nitrogen content varied. The weld fusion zone exhibited duplex structure(austenite+ferrite) at nitrogen contents less than 0.10 wt.% but fully austenitic structure at nitrogen contents more than 0.20 wt.%. The weld fusion zone in alloys with about 0.15 wt.% nitrogen experienced primary austenite + primary ferrite solidification (mode AF) and contained delta ferrite less than 1% at room temperature. Regarding to solidification cracking susceptibility, the welds with fully austenitic structure exhibited high cracking susceptibility while those with duplex structure low susceptibility. The cracking susceptibility increased slowly with an increase in nitrogen content up to 0.20 wt.% but sharply as nitrogen content exceeded 0.20 wt.%, which was attributed to solidification mode shift fro primary ferrite to primary austenite single phase solidification.

  • PDF

슈퍼 듀플렉스 스테인리스강 다층용접부의 미세조직 및 공식(Pitting Corrosion)에 미치는 용접열사이클의 영향 (Effect of Welding Thermal Cycle on Microstructure and Pitting Corrosion Property of Multi-pass Weldment of Super-duplex Stainless Steel)

  • 남성길;박세진;나혜성;강정윤
    • Journal of Welding and Joining
    • /
    • 제28권4호
    • /
    • pp.18-25
    • /
    • 2010
  • Super-duplex stainless steels (SDSS) have a good balance of mechanical property and corrosion resistance when they consist of approximately equal amount of austenite and ferrite. The SDSS needs to avoid the detrimental phases such as sigma(${\sigma}$), chi(${\chi}$), secondary austenite(${\gamma}2$), chromium carbide & nitride and to maintain the ratio of ferrite & austenite phase as well known. However, the effects of the subsequent weld thermal cycle were seldom experimentally studied on the micro-structural variation of weldment & pitting corrosion property. Therefore, the present study investigated the effect of the subsequent thermal cycle on the change of weld microstructure and pitting corrosion property at $40^{\circ}C$. The thermal history of root side was measured experimentally and the change of microstructure of weld root & the weight loss by pitting corrosion test were observed as a function of the thermal cycle of each weld layer. The ferrite contents of root weld were reduced with the subsequent weld thermal cycles. The pitting corrosion was occurred in the weld root region in case of the all pitted specimen & in the middle weld layer in some cases. And the weight loss by pitting corrosion was increased in proportional to the time exposed at high temperature of the root weld and also by the decrease of ferrite content. The subsequent weld thermal cycles destroy the phase balance of ferrite & austenite at the root weld. Conclusively, It is thought that as the more subsequent welds were added, the more the phase balance of ferrite & austenite was deviated from equality, therefore the pitting corrosion property was deteriorated by galvanic effect of the two phases and the increase of 2nd phases & grain boundary energy.

페라이트계 스테인리강의 FCA 육성용접부 연성 평가 (Evaluation of ferritic stainless steel FCA overlay weld metal ductility)

  • 김영일;최준태;김대순
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2006년도 춘계 학술대회 개요집
    • /
    • pp.140-142
    • /
    • 2006
  • The bend ductility of Type 410S ferritic stainless steel overlay weld on carbon steel was investigated. Overlay weld that was stabilized with Nb had large columnar ferrite grain and Nb precipitate on grain boundary. And that caused fracture when bend test without concern of PWHT condition. Proper bend ductility at as-welded condition was achieved by refining ferrite grain with addition of $0.04{\sim}0.09%$ Al and $0.2{\sim}0.5%$ Ti that make oxide, carbide and nitride at high temperature.

  • PDF

냉간가공한 오스테나이트계 강재의 극저온 특성에 미치는 Ni 및 N의 영향 (The Effect of Nickel and Nitrogen on Cryogenic Properties of Austenitic Stainless Steel)

  • 최진일;주기남;강영환
    • 한국표면공학회지
    • /
    • 제37권1호
    • /
    • pp.64-70
    • /
    • 2004
  • Cryogenic characteristics of austenitic stainless steel based on 304 steel with nickel and nitrogen were investigated at room temperature and $-196^{\circ}C$. The alloys were fabricated by vacuum arc furnace and cold working after homogenization treatment. The addition of nickel and nitrogen decreased the stability of $\delta$-ferrite and induced the stability against the formation of martensite to result significantly in enhancing ductility at $-196^{\circ}C$. Nitrogen reduced Md temperature, which was beneficial to the tensile strength and elongation at $25^{\circ}C$ and -196$^{\circ}C$.