DOI QR코드

DOI QR Code

Influence of W Additions on the Corrosion Characteristics and Hardness of Super Duplex Stainless Steel

슈퍼 듀플렉스 내식강의 부식특성 및 경도에 미치는 텅스텐 첨가의 영향

  • Yun-Gi Han (Dept. Mater. Sci. & Eng., Hanbat National University) ;
  • Jeong-Min Kim (Dept. Mater. Sci. & Eng., Hanbat National University)
  • 한윤기 (한밭대학교 신소재공학과) ;
  • 김정민 (한밭대학교 신소재공학과)
  • Received : 2023.08.01
  • Accepted : 2023.09.14
  • Published : 2023.09.30

Abstract

This study aims to investigate the effects of tungsten additions on the microstructure, corrosion characteristics, and hardness of super duplex stainless steel heat-treated at two different annealing temperatures. Under the annealing temperature of 1100℃, the microstructure of the stainless steels consisted mainly of ferrite, while under the annealing temperature of 1000℃, significant amounts of austenite and secondary phases were also observed. In terms of corrosion characteristics in 3.5 wt%NaCl solution, there was not a significant difference due to W addition at the 1100℃ conditions. However, at the 1000℃, a tendency of decreased corrosion resistance was observed with increasing the tungsten content. On the other hand, the micro-hardness of the stainless steel heat-treated 1000℃ showed an increasing trend with tungsten addition. This increase can be mainly attributed to the higher fraction of secondary phases, primarily sigma, known for their high hardness.

Keywords

Acknowledgement

This work was supported by the industrial Strategic Technology Development Program funded by the Korean Government (MOTIE) (No. 20015666).

References

  1. J. Li, W. Shen, P. Lin, F. Wang, and Z. Yang: Metals, 10 (2020) 1481.
  2. E. Bettini, U. Kivisakk, C. leygraf, and J. Pan: Int. J. Electrochem. Sci., 9 (2014) 61-80. https://doi.org/10.1016/S1452-3981(23)07698-8
  3. Ziying Zhang, H. Zhao, H. Zhang, J. Hu, and J. Jin: Corros. Sci., 121 (2017) 22-31. https://doi.org/10.1016/j.corsci.2017.02.006
  4. S. H. Jeon, D. H. Hur, H. J. Kim, and Y. S. Park: Corros. Sci., 90 (2015) 313-322. https://doi.org/10.1016/j.corsci.2014.10.018
  5. T. H. Chen, and J. R. Yang: Mater. Sci. Eng., A311 (2001) 28-41. https://doi.org/10.1016/S0921-5093(01)00911-X
  6. B. Deng, Y. Jiang, J. Gao, and J. Li: J. Alloys Compd., 493 (2010) 461-464.
  7. David D. S. Silva, Thiago A. Simoes, Daniel A. Macedo, Alysson H.S. Bueno, Sandro M. Torres, and Rodinei M. Gomes, Mater. Chem. Phys., 259 (2021) 124056.
  8. C. Torres, R. Johnsen, and M. Iannuzzi: Corros. Sci., 178 (2021) 109053.
  9. E. B. Haugan, M. Naess, C. T. Rodriguez, R. Johnsen, and M. Iannuzzi: Corrosion, 73 (2017) 53-65. https://doi.org/10.5006/2185
  10. C. Torres, M. S. Hazarabedian, Z. Quadir, R. Johnsen, and M. Iannuzzi: J. Electrochem. Soc., 167 (2020) 081510.
  11. H. G. Choi, H. G. Park, B. H. Jung, H. S. Han, D. S. Bae, and C. Y. Kang: J. Ocean Eng. Tech., 24 (2010) 55-59.
  12. A. R. Akisanya, U. Obi, and N. C. Renton: Mater. Sci. Eng., A535 (2012) 281-289. https://doi.org/10.1016/j.msea.2011.12.087
  13. J. Zhao, T. Lee, J. H. Lee, Z. Jiang, and C. S. Lee: Metall. Mater. Trans., A44 (2013) 3511-3521. https://doi.org/10.1007/s11661-013-1695-x
  14. K. Ogawa, and T. Osuki: ISIJ Inter., 59 (2019) 122-128. https://doi.org/10.2355/isijinternational.ISIJINT-2018-477
  15. Y. Ge, J. Cheng, C. Yan, B. Zhang, S. Zhu, L. Xue, S. Hong, Y. Wu, Z. Zhang, X. Liang, and X. Zhang: Intermetallics, 143 (2022) 107473. https://doi.org/10.1016/j.intermet.2022.107473
  16. G. Argandona, J. E. Palacio, C. Berlanga, M. V. Biezma, P. J. Rivero, J. Pena, and R. Rodriguez: Metals, 7 (2017) 7060219.
  17. M. Martins, and L. C. Casteletti: Mater. Charact., 55 (2005) 225-233. https://doi.org/10.1016/j.matchar.2005.05.008