• Title/Summary/Keyword: Fermented food waste

Search Result 65, Processing Time 0.022 seconds

Quality Characteristics of Distilled Soju with Different Pretreatment of Rice (쌀 전처리를 달리한 증류주의 품질특성)

  • Seung Eun, Lee;Ji-Eun, Kang;Bora, Lim;Heui-Yun, Kang
    • Journal of the Korean Society of Food Culture
    • /
    • v.37 no.6
    • /
    • pp.555-563
    • /
    • 2022
  • The purpose of this study was to confirm the quality characteristics of distilled soju with different rice pretreatment processes. The non-steamed fermentation method is a technology that uses starch to produce saccharification and alcohol without going through the steaming of raw materials. It has advantages such as reduction of manpower and cost, prevention of nutrient loss, and minimization of waste water. In this study, rice used were non-steamed and pulverized 'Baromi2', nonsteamed and steamed 'Samgwang', and puffed rice. As the fermenting agent, koji, modified nuruk, N9 yeast, and purified enzyme were used, and lactic acid was added to prevent contamination during fermentation. The amount of water was 300% in total, and after the first watering, 5 days after fermentation, the second watering was carried out. As a result of the study, it was confirmed that the non-steamed fermentation method using 'Baromi' was superior to the existing fermentation method in terms of temperature during fermentation, final alcohol content, soluble solids, and pH. By expanding the stability of the production technology of non-steamed fermentation technology, product quality improvement can be expected.

Effects of Mixing Ratio and Organic Loading Rate of Acid Fermented Food Wastes and Sewage Sludge on the Anaerobic Digestion Process (음식물찌꺼기 산발효산물과 하수슬러지의 혼합비 및 유기물부하가 병합처리에 미치는 영향)

  • Ahn, Chul-Woo;Park, Jin-Sik;Jang, Seong-Ho
    • Korean Journal of Environmental Agriculture
    • /
    • v.25 no.3
    • /
    • pp.247-256
    • /
    • 2006
  • This study has been conducted for the process of food wastes disposal using surplus capacity of established sewage treatment plant by co-digestion of fermented food wastes and sewage sludge after thermophilic acid fermentation of food wastes. The co-digestion of thermophilic acid fermented food wastes and sewage sludge was performed by semi-continous method in mesophilic anaerobic digestion reactor. It showed great digestion efficiency as the average SCOD and VS removal efficiency in organic loading rate 3.30g VS/L.d. were 74.2% and 73.6%, and the gas production rate and average methane content were 0.440 L/g $VS_{add}.d$ and 66.5%, respectively. Based on the results of this study, the co-digestion of thermophilic acid fermented food wastes and sewage sludge in sewage treatment plant is able to improve treatment efficiency of anaerobic digestion reactor and to dispose food wastes simultaneously, and was proved excellent economical efficiency comparing with any other treatment methods.

The Manufacture of Inoculum for Fermented Pig Feed Production from Food Wastes (음식물류폐기물의 돼지 발효사료화를 위한 종모배양액 제조)

  • Lee, Kyung-Seok;Hong, Seung-Yoon;Kim, Young-Jun;Lee, Ki-Young
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.15 no.2
    • /
    • pp.98-108
    • /
    • 2007
  • In order to use food wastes for the source of fermented feed for pigs, this study was aimed to produce better culture inoculum by the aeration and addition of pig' s blood meal as sub nutrient. For the preparation of inoculum as bacterial strain, Lactobacillus brevis isolated from pig intestine, and a yeast Saccharomyces cerevisiae from strawberries were used. Molasses and whey were used as main ingredients for the culture solution as well as yeast extract and other ingredients as sub nutrients. As the experimental result, aeration showed a positive effect to enhance viable cell count or retarding death phase. Although sub nutrient yeast extracts were replaced with pig's blood meal, fermentation characteristics were almost similar to that of yeast extract. When the inoculum was stored at room temperature, L. brevis and S. cerevisiae maintained the viable cell concentration of approximately 8 log cfu/mL for 1 week. 2 Days after the culture solution was mixed with food waste, the number of unwanted bacteria had rapidly increased, but E.coli was not detected for 5 days.

  • PDF

Sequencing batch reactor treating ship sewage and external carbon source (연속 회분식 공정을 이용한 선박오수와 외부탄소원의 혼합처리)

  • Park Sang-Ho;Choi Jeong-Hye;Ko Sung-Chul;Kim In-Soo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.11a
    • /
    • pp.147-152
    • /
    • 2004
  • In Sequence Batch Reactor (SBR), the removal efficiencies if nutrient materials such as nitrogen and phosphate depend highly on quantity and quality of organic carbon source. Food waste thai contains abundant organic materials has been produced in ship. The applicability if anaerobically fermented if food waste (AFFW) as an external carbon source was examined in the lab-scale SBR process operated at $25^{\circ}C$. With the addition if AFFW increased, average removal efficiencies if $COD_cr$, T-N, T-P changed to $98.5\%,\;95\%,\;93\%$, respectively. Denitrification rate is 0.30g $NO_3-N/g\;VSS{\cdot}day$. In summary, it was suggested tint AFFW sould be used as an economical and effective carbon source for the biological nitrogen and phosphate removal.

  • PDF

EFFECT OF FEED RESOURCE FROM FOOD WASTE ON GROWTH AND FEED CONVERSION OF RAT (남은 음식물을 이용한 사료자원이 흰쥐의 성장과 사료효율에 미치는 효과)

  • Chung, K.H.;Jang, K.H.;Park, Y.J.;Hong, Y.S.;Shin, H.T.
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.7 no.2
    • /
    • pp.65-71
    • /
    • 1999
  • This study was conducted to evaluate the feasibility of food waste as a feed resources by fermentation and fermented food waste as a substitute of rat feed on the performance with measuring the liveweight gain, feed consumption, feed conversion and digestibility Sixty-two grams Sprague-Dawley line 36 rats were allocated three treatments 12 rats of each(3replication ${\times}$ 4 rats). The substitution level of fermented food waste to commercial broiler feed were control, 0: 100: treatment I, 10: 90: treatment II, 20:80. The chemical composition of fermented food waste was appeared to follows : dry matter, 88.47% : crude ash. 12.95: crude protein, 20.82%; crude fiber, 13.62; ether extract, 9.15%. The body weight of treatment I and II at 1 weeks was significantly lower than those of control(p<.05) and weekly weight gain of control at 0-1 weeks was significantly higher than those of treatment I and II(p<.05). Those were higher in treatment I than those of rest groups at 1-2 weeks(p<.05). Total weight gain of treatment II was significantly lower than those of control and treatment I(p<.05) Total feed consumption of treatment II was significantly higher than those of control (p<.05) and weekly feed consumption of control and treatment II at 3-4 weeks was significantly higher than those of treatment II(p<.05). but those were higher in treatment I and II than those of control at 2-3 weeks(p<.05). Commutative feed conversion of treatment II was significantly higher than those of control(p<.05) and weekly feed conversion of treatment II and III at 0-1 weeks was significantly higher than those of control(p<.05) Dry matter digestibility of control and treatment I was significantly higher than those of treatment II(p<.05) and organic matter digestibility was higher in control than those of treatment II(p<.05).

  • PDF

A Study on Biogas Yield According to Food Waste Leachate Acid Fermentation Conditions (음폐수 산발효 조건에 따른 바이오가스 생산량에 관한 연구)

  • Moon, Kwangseok;Pak, Daewon;Kim, Jaehyung
    • Journal of Energy Engineering
    • /
    • v.24 no.4
    • /
    • pp.11-17
    • /
    • 2015
  • This study performed acid fermentation pre-treatment to improve production efficiency of methane that is produced as a product in case of anaerobic fermentation by using food waste leachate, and attempted to confirm the acid fermentation optimum through the BMP test by using pre-treated food waste leachate to increase the yield of methane. As a result of the BMP experiment by using acid fermented food waste leachate, the highest yield of methane of 0.220 L/g VS was confirmed in the HRT three-day condition, and in the initial BMP test by pH, pH 6 was 19,920 mg/L that the highest VFA and acetic acid/TVFA(76.2%) were shown. At this time, it was confirmed that the yield of methane was mostly within 10 days that was reduced to around one-third compared to the general methane fermentation (within 30 days). As the yield of methane was 0.294 L/g VS, it showed a high efficiency of around 1.3 times compared to the control group.

Evaluating Feasibility of Producing Fermented Organic Fertilizer with Vegetable Waste

  • Kim, Eui-Yeong;Kook, Seung-Woo;Oh, Taek-Keun;Lee, Chang-Hoon;Ko, Byong-Gu;Kim, Seok-Cheol;Kim, Sung-Chul
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.6
    • /
    • pp.760-767
    • /
    • 2016
  • Food waste (FW) has been recognized as a critical problem in Korea and many research was conducted to efficiently utilize or treat FW. Main purpose of this research was to evaluate a feasibility for producing fermented organic fertilizer with vegetable waste (VW). Three different organic materials (saw dust, coco peat, and waste mushroom media) were mixed with VW at the rate of 30, 40, 50% respectively. Total days of composting experiment were 35 days and each sub samples were collected at every 5 days from starting of composting. Result showed that inner temperature of composting was increased to $60{\pm}4^{\circ}C$ within 5~10 days depending on varied organic materials and mixing ratio. Among different treatment, the highest increase of inner temperature was observed when 30% of saw dust was mixed with VW. After finishing composting experiment, maturity of each compost was evaluated with solvita and germination test. Maturity index (MI) of each treatment was ranged between 5~7 indicating that manufactured fertilizer was curing or finished stage. Calculated germination index (GI) was at the range of 57.83~101.16 depending on organic materials and mixing ratio. Both MI and GI showed that manufactured fertilizer was met for fertilizer criteria while control (VW only) was not adequate for composting. Overall, VW can be utilized for making organic fertilizer mixing with saw dust, coco peat and more research should be conducted to make high quality of organic fertilizer with vegetable waste.

Effects of Fermented Fecal Solid Diets on Growth of the Sea Cucumber Apostichopus japonicus (육상어류양식장의 고형오물을 발효시켜 만든 사료를 급여한 해삼(Apostichopus japonicus)의 성장)

  • Jin, Feng;Choi, Jong- Kuk;Jeong, U-Cheol;Md, Anisuzzaman;Ryu, Chung-Ho;Choi, Byeong-Dae;Kang, Seok-Joong
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.49 no.2
    • /
    • pp.161-167
    • /
    • 2016
  • The effects of fermented fecal solid diets on the growth of the sea cucumber Apostichopus japonicus was investigated in a recirculating aquaculture system (RAS) during a 90-day experiment at 16.5-17.5℃, 32±0.5 psu salinity, pH 7.9-8.2, and 5.2-7.1 mg/L dissolved oxygen. The aim was to determine the feasibility of RAS fecal solid waste as a renewable feed for A. japonicus. In this study, unfermented fecal solid (UF), fermented fecal solid (FF), and commercial feed (CF) diets were used. The results showed that the growth rate did not differ significantly (P>0.05) between A. japonicus fed FF and CF; however, the growth rates of A. japonicus fed FF and CF were ~50% higher than that of those fed UF. Thus, utilization of fecal solid by A. japonicus may overcome the problem regarding accumulation of RAS waste. Use of a fermentation process would improve utilization of fecal solid as a renewable food source for A. japonicus.

Quality Properties of Fermented Squid Viscera Product with Aspergillus oryzae Koji and Its Seasoning (Koji를 첨가하여 발효한 오징어 내장 조미료의 품질특성)

  • Choi, Seung-Hwa;Kim, Sang-Moo
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.1
    • /
    • pp.94-101
    • /
    • 2011
  • Squid (Todarodes pacificus) is processed as dried or seasoned-dried products and its catch gradually increased from 270,298 M/T in 2005 to 367,940 M/T in 2008 in Korea. Squid processing by-product (viscera) was usually discarded as a waste resulting in environmental problem. In order to utilize squid viscera for more value-added products, a natural squid seasoning was developed by fermenting with Aspergillus oryzae koji. Squid viscera at 5, 10 and 15% salt concentrations with fixed levels of 5% koji and 30% water was fermented at room temperature. The quality properties of squid fermented products such as amino-N, TMA, VBN, total viable cell count, pH and total acidity were determined at different fermentation periods. The contents of amino-N, TMA, and VBN of squid seasoning at 5% salt concentration fermented for 14 days were the highest. Based on amino-N content, squid viscera at 5% koji fermented for 14 days was selected for further assays: the content of moisture, crude protein, crude lipid, crude ash, and carbohydrate were 5.98, 35.19, 33.08, 11.30, and 14.45%, respectively. The content of glutamate, alanine, leusine and lysine were 7.06, 12.34, 9.90 and 10.22%, respectively. The $IC_{50}$ values of DPPH scavenging and $\beta$-glucuronidase inhibitory activity were 12.89 and 12.58 mg/mL, respectively. A natural squid seasoning was manufactured by mixing fermented squid viscera and an ingredient. Based on the results of sensory evaluation, the fermented squid viscera seasoning was almost equal to other natural complex seasonings such as anchovy, cow meat, and fisheries seasoning.

Effect of Livestock Wastewater Addition on Hydrogen and Organic Acids Production Using Food Waste (음식물쓰레기 이용 혐기 산발효에 의한 수소 및 유기산 생산: 축산폐수 첨가 효과)

  • JANG, SUJIN;KIM, DONGHOON;LEE, MOKWON;NA, JEONGGEOL;KIM, MISUN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.3
    • /
    • pp.199-205
    • /
    • 2015
  • Organic wastes such as food waste (FW), livestock wastewater (LW), and sewage sludge (SWS) can produce hydrogen ($H_2$) by anaerobic acid fermentation. Expecially, FW which has high carbohydrate content produces $H_2$ and short chain fatty acids by indigenous $H_2$ producing microorganisms without adding inoculum, however $H_2$ production rate (HPR) and yield have to be improved to use a commercially available technology. In this study, LW was mixed to FW in different ratios (on chemical oxygen demand (COD) basis) as an auxiliary substrate. The mixture of FW and LW was pretreated at pH 2 using 6 N HCl for 12 h and then fermented at $37^{\circ}C$ for 28 h. HPR of FW, 254 mL $H_2/L/h$, was increased with the addition of LW, however, mixing ratio of LW to FW was reversely related to HPR, exhibiting HPR of 737, 733, 599, and 389 mL $H_2/L/h$ at the ratio of FW:LW=10:1, 10:2, 10:3, and 10:4 on COD basis, respectively. Maximum HPR and $H_2$ production yield of 737 $H_2/L/h$ and 1.74 mol $H_2/mol$ hexoseadded were obtained respectively at the ratio of FW:LW=10:1. Butyrate was the main organic acid produced and propionate was not detected throughout the experiment.