• Title/Summary/Keyword: Fermented food

Search Result 3,724, Processing Time 0.043 seconds

Changes in Sugar Level, Acidity, Viscosity, and Color of Lactic Acid Bacteria- Fermented Waxy Rice Paste Containing Colored Agro-food Products (유색 식물을 이용한 약초부각용 발효찹쌀풀의 당, 산도, 점도 및 색도 변화)

  • Ko, Young-Ran;Shon, Mi-Yae;Chung, Kyung-Sook;Wang, Su-Bin;Kang, Seong-Koo;Park, Seok-Kyu
    • Food Science and Preservation
    • /
    • v.16 no.2
    • /
    • pp.266-275
    • /
    • 2009
  • To develop new high-quality Yakchobugak, features of Lactococcus lactis-fermented waxy rice paste after addition of some colored powdered agro-food products were investigated. Total and reducing sugars of waxy rice paste fermented by lactic acid bacteria were higher than those of control raw waxy rice paste. Total acidity gradually increased as powder concentration rose, being 1.02-1.56% and 0.96-1.87% in samples fermented with Cucurbita maxima and Capsicum annuum powders, respectively; these values were 3-4 times those in rice fermented with other powders. Fermented waxy rice paste viscosities were lower than those of non-fermented samples. The viscosities of samples fermented with Curcuma longa and Opuntia ficus powders were in the range $100-160{\times}10^4$ centipoise($mPa{\cdot}s$), and those of pastes fermented with Robus coreanus and Camellia sinensis extracts were under $40{\times}10^4mPa{\cdot}s$. Hunter color lightness(L) values decreased and yellowness(b) values rose after fermentation. Waxy rice paste fermented with Robus coreanus showed uniform particle size distribution, and many pores, by scanning electron micrography.

Separation and Purification of Lipase Inhibitory Peptide from Fermented Milk by Lactobacillus plantarum Q180

  • Kim, Seulki;Lim, Sang-Dong
    • Food Science of Animal Resources
    • /
    • v.40 no.1
    • /
    • pp.87-95
    • /
    • 2020
  • In this study, we separated and purified lipase inhibitory peptide from fermented milk by Lactobacillus plantarum Q180 with the aim of developing a new functional anti-lipase activity yogurt product. L. plantarum 180 was inoculated into 10% reconstituted skimmed milk and incubated at 37℃ until the pH of the culture reached pH 4.4. The lipase activity was measured using porcine pancreatic lipase. The lipase inhibitory peptides were gradually isolated by ultrafiltration, reversed phase column chromatography (RPC), reversed phase high-performance liquid chromatography (RP-HPLC), and gel permeation high-performance liquid chromatography (GP-HPLC) from the fermented milk by L. plantarum Q180. An ODS-AQ column was used for the RPC, a Vydac C18 column for the RP-HPLC, and a Superdex Peptide HR column for the GP-HPLC. The peptide was composed of Asp, Thr, Ile, Ser, Ala, and Gln, and the anti-lipase activity (IC50) was 2,817 ㎍/mL.

The Functionality of the Saltwort (Salicornia herbacea L.) Extract Fermented Juice (함초 추출물 발효액의 기능성)

  • Song, Tae-Cheol;Lee, Chang-Ho;Kim, Young-Eon;Kim, In-Ho;Han, Dae-Seok;Yang, Dong-Heum
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.36 no.4
    • /
    • pp.395-399
    • /
    • 2007
  • The purpose of this study was to investigate the antioxidant and fibrinolytic activities of saltwort fermented juice. Saltwort extract was fermented using lactic acid bacteria at $30^{\circ}C$ for 3 days and the fermented juice was analyzed for its functionality as a potential functional food source. The addition of sugar improved the cell viability during fermentation of saltwort. At the concentration of 50%, lyophilized fermented juice showed DPPH-radical scavenging activities of 23.7% and SOD-likely activity of 34.5%. Fibrinolytic activity of fermented juice was also observed at a concentration of 25%. In conclusion, saltwort fermented juice appears to have not only anti-oxidant effect but also cardiovascular protection.

Effects of Feeding a Dry or Fermented Restaurant Food Residue Mixture on Performance and Blood Profiles of Rats

  • Kim, Young-Il;Bae, Ji-Sun;Jee, Kyung-Su;McCaskey, Tom;Kwak, Wan-Sup
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.12
    • /
    • pp.1744-1751
    • /
    • 2011
  • This study was conducted to compare the effects of feeding dry or fermented (aerobically or anaerobically with or without lactic acid bacteria) restaurant food residue mixture-containing diets on animal performance and blood profiles. Rats were used as the model animal for the simulation of laboratory rodents, rabbit or horse feeding and fed for 4 wks. The results were compared with feeding a dry diet (control) with the same ingredient composition as diets processed by aerobic and anaerobic methods. Feeding all the fermented diets tended to increase (p>0.05) average daily gain of rats resulting in improved (p<0.01) feed efficiency. Apparent digestibility of NDF was increased (p<0.05) by feeding the fermented diets, although digestibilities of DM, OM, CP, and NFC were not affected (p>0.05). Compared with the aerobically fermented diet, digestibility of ADF was increased (p<0.05) for the anaerobically fermented diet and for the 0.5% LAB culture plus anaerobically fermented diet. The digestibility of crude ash tended to increase (p>0.05) with feeding of the fermented diets. Feeding either of the fermented diets had little effects on serum nutrients, electrolytes, enzymes and blood cell profiles of rats except sodium and uric acid concentrations. These results showed that compared with feeding a dry food residue-containing diet, feeding aerobically or anaerobically fermented diets showed better animal performance as indicated by higher feed efficiency and rat growth rate. These improvements were attributed to the desirable dietary protein conservation during the food residue fermentation process and to higher total tract digestibilities of NDF and crude ash in the fermented food residue diets.

Sensory and Chemical Characteristics of Worts Fermented by Leuconostoc citreum and Saccharomyces cerevisiae and Consumer Acceptability with Added Flavorings

  • Shin, Jin-Yeong;Delgerzaya, Purev;Lim, Yong-Bin;Park, Jin-Byung;Kim, Kwang-Ok
    • Food Science and Biotechnology
    • /
    • v.18 no.5
    • /
    • pp.1109-1117
    • /
    • 2009
  • This study was conducted to examine the chemical and sensory characteristics of fermented worts and consumer acceptability according to added flavorings. The worts were fermented by yeast (Saccharomyces cerevisiae) following fermentation by lactic acid bacteria (Leuconostoc citreum) at different aeration conditions. Chemical and sensory descriptive analyses were conducted to examine the effects of the fermentation conditions. The consumer acceptability of the worts with added flavorings was also examined. Organic acids, functional sugars, and ethanol were produced by L. citreum and S. cerevisiae, respectively. Ethanol concentrations ranged from 10 to 25 g/L depending on the fermentation conditions. The sensory characteristics of the fermented worts were clearly differentiated by the fermentation conditions. Yeast fermentation resulted in high intensities for certain sensory attributes such as 'alcohol', 'fermented barley', 'fermented white grape', and 'grassy'. Consumer acceptability changed with different levels of sugar and lemon flavoring, and the optimum levels were determined as 14.08% sugar and 0.98% lemon flavoring. Under these conditions, it was shown that a relatively acceptable fermented wort beverage containing functional materials can be produced.

Analysis techniques for fermented foods microbiome (발효식품의 마이크로바이옴 분석 기술)

  • Cha, In-Tae;Seo, Myung-ji
    • Food Science and Industry
    • /
    • v.50 no.1
    • /
    • pp.2-10
    • /
    • 2017
  • Human have eaten various traditional fermented foods for a numbers of million years for health benefit as well as survival. The beneficial effects of fermented foods have been resulted from complex microbial communications within the fermented foods. Therefore, the holistic approaches for individual identification and complete microbial profiling involved in their communications have been of interest to food microbiology fields. Microbiome is the ecological community of microorganisms that literally share our environments including foods as well as human body. However, due to the limitation of culture-dependent methods such as simple isolations of just culturable microorganisms, the culture-independent methods have been consistently developed, resulting in new light on the diverse non-culturable and hitherto unknown microorganisms, and even microbial communities in the fermented foods. For the culture-independent approaches, the food microbiome has been deciphered by employing various molecular analysis tools such as fluorescence in situ hybridization, quantitative PCR, and denaturing gradient gel-electrophoresis. More recently, next-generation-sequencing (NGS) platform-based microbiome analysis has been of interest, because NGS is a powerful analytical tool capable of resolving the microbiome in respect to community structures, dynamics, and activities. In this overview, the development status of analysis tools for the fermented food microbiome is covered and research trend for NGS-based food microbiome analysis is also discussed.

A study on the origin of fermentation culture in Northeast Asia (동북아 발효문화의 기원에 관한 고찰)

  • Lee, Cherl-Ho
    • Food Science and Industry
    • /
    • v.53 no.2
    • /
    • pp.134-147
    • /
    • 2020
  • Northeast Asia comprises many characteristic cultural areas including China, Mongolia, Korea and Japan. These areas have their own traditional food cultures, and Korea is known as the home of fermented foods in this region. The origin of Northeast Asian fermented foods, cereal alcoholic beverages, fermented vegetables(kimchi), fermented fish and fermented soybean products were investigated in relation to the primitive earthen vessels developed in this region. The geographical and environmental background of the appearance of primitive pottery culture in the Korea Strait region, and its influence on the development of fermentation technology in Northeast Asia were reviewed focusing on Korean dietary culture.

Physicochemical and Functional Properties of Yeast-Fermented Cabbage

  • Ahhyeon Chun;So Jeong Paik;Jongbeom Park;Ryeongeun Kim;Sujeong Park;Sung Keun Jung;Soo Rin Kim
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.10
    • /
    • pp.1329-1336
    • /
    • 2023
  • Microbial fermentation is often used to improve the functionality of plant-based food materials. Herein, we investigated changes in the physicochemical and functional properties of cabbage during yeast fermentation to develop new products using fermented cabbage. Among the 8 types of food-grade yeast, both Saccharomyces cerevisiae and Saccharomyces boulardii fermented 10% cabbage powder solution (w/w) the most effectively, leaving no soluble sugars after 12 h of fermentation. In addition, the yeast fermentation of cabbage resulted in functionally positive outcomes in terms of sulforaphane content, antioxidant properties, and anti-inflammatory activity. Specifically, the yeast-fermented cabbages contained about 500% more sulforaphane. The soluble fraction (5 ㎍/ml) of yeast-fermented cabbage had no cytotoxicity in murine RAW 264.7 cells, and the radical-scavenging capacity was equivalent to 1 ㎍/ml of ascorbic acid. Moreover, cabbage fermented with S. boulardii significantly suppressed both lipopolysaccharides (LPS)-induced nitric oxide production and LPS-induced reactive oxygen species production in RAW 264.7 cells, suggesting a potential anti-inflammatory effect. These results support the idea that yeast fermentation is promising for developing functionally improved cabbage products.

Bioactive Properties of Novel Probiotic Lactococcus lactis Fermented Camel Sausages: Cytotoxicity, Angiotensin Converting Enzyme Inhibition, Antioxidant Capacity, and Antidiabetic Activity

  • Ayyash, Mutamed;Olaimat, Amin;Al-Nabulsi, Anas;Liu, Shao-Quan
    • Food Science of Animal Resources
    • /
    • v.40 no.2
    • /
    • pp.155-171
    • /
    • 2020
  • Fermented products, including sausages, provide several health benefits, particularly when probiotics are used in the fermentation process. This study aimed to examine the cytotoxicity (against Caco-2 and MCF-7 cell lines), antihypertensive activity via angiotensin-converting enzyme (ACE) inhibition, antioxidant capacity, antidiabetic activity via α-amylase and α-glucosidase inhibition, proteolysis rate, and oxidative degradation of fermented camel and beef sausages in vitro by the novel probiotic Lactococcus lactis KX881782 isolated from camel milk. Moreover, camel and beef sausages fermented with commercial starter culture alone were compared to those fermented with commercial starter culture combined with L. lactis. The degree of hydrolysis, antioxidant capacity, cytotoxicity against Caco-2 and MCF-7, α-amylase, α-glucosidase, and ACE inhibitory activities were higher (p<0.05) in fermented camel sausages than beef sausages. In contrast, the water and lipid peroxidation activity were lower (p<0.05) in camel sausages than beef sausages. L. lactis enhanced the health benefits of the fermented camel sausages. These results suggest that camel sausage fermented with the novel probiotic L. lactis KX881782 could be a promising functional food that relatively provides several health benefits to consumers compared with fermented beef sausage.