• 제목/요약/키워드: Fermentation techniques

검색결과 100건 처리시간 0.018초

Recent insight and future techniques to enhance rumen fermentation in dairy goats

  • Mamuad, Lovelia L.;Lee, Sung Sill;Lee, Sang Suk
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제32권8_spc호
    • /
    • pp.1321-1330
    • /
    • 2019
  • Recent development of novel techniques in systems biology have been used to improve and manipulate the rumen microbial ecosystem and gain a deeper understanding of its physiological and microbiological interactions and relationships. This provided a deeper insight and understanding of the relationship and interactions between the rumen microbiome and the host animal. New high-throughput techniques have revealed that the dominance of Proteobacteria in the neonatal gut might be derived from the maternal placenta through fetal swallowing of amniotic fluid in utero, which gradually decreases in the reticulum, omasum, and abomasum with increasing age after birth. Multi "omics" technologies have also enhanced rumen fermentation and production efficiency of dairy goats using dietary interventions through greater knowledge of the links between nutrition, metabolism, and the rumen microbiome and their effect in the environment. For example, supplementation of dietary lipid, such as linseed, affects rumen fermentation by favoring the accumulation of ${\alpha}$-linolenic acid biohydrogenation with a high correlation to the relative abundance of Fibrobacteriaceae. This provides greater resolution of the interlinkages among nutritional strategies, rumen microbes, and metabolism of the host animal that can set the foundation for new advancements in ruminant nutrition using multi 'omics' technologies.

Investigation into the Ecological and Natural Dyeing with Medicinal Plants after Fermentation by NURUK and the Effect of Natural Additives

  • Park, Youngmi
    • 한국염색가공학회지
    • /
    • 제24권4호
    • /
    • pp.260-269
    • /
    • 2012
  • The aim of this study was to develop higher-value added dyeing materials with the fermentation-dyeing -mordanting system using only the natural ingredients by integrating traditional fermentation techniques with traditional dyeing technique. Nuruk, which is used mainly to ferment traditional foods, was used as a fermenting agent to ferment 5 different types of materials. Acidic burnt alum and alkaline calcium hydroxide were used as natural mordants. The dyeability checked after fermentation showed that both cotton and silk mordanted with Gardenia jasminoides did not show notable changes, and 10 days of fermentation was found to be appropriate. Sophora japonica L. performed better on cotton materials mordanted with slaked lime, and alkaline mordants were found to be more effective than acidic ones. With Rheum coreanum, a fermentation period of more than 24 days ($5^{th}$ fermentation) worked best on cotton material, showing a 5 fold increase in the K/S value after the $5^{th}$ slaked lime fermentation than with no fermentation. Rhus javanica L. was found to increase the color fastness to gentle washing and the fastness to light was found to possess 4 means that natural dyed fabric have the highest level of durability, the grade 1 the lowest level of fastness.

한국 전통발효식품의 현재와 미래발전전략 (Korean traditional fermented foods and their future approach)

  • 신동화
    • 식품과학과 산업
    • /
    • 제53권2호
    • /
    • pp.148-165
    • /
    • 2020
  • At beginning the fermentation is naturally occurred by natural microbes. Fermentation techniques apply as two ways, one is fermentation to produce fermented foods and the other is preservation of the foods for longer time for future. They contain various biological active ingredient, like as vitamins. Microorganisms concerning fermentation are well known the functionalities. Each nations in the world have unique and distinct foods and dietary habits on their own specific cultures and accessible edible raw resources of plant or animal origins. Many countries have their unique traditional fermented foods based on their natural conditions. Korea has very famous traditional fermented foods, as Kimchi, fermented soybean products(Jang), fermented fish products(Jeotgal) and vinegar. In this review will discuss the overall fermented foods and typical Korean traditional fermented foods with functionalities, and future effort to enlarge into wide range of new industry.

Bioprocess Strategies and Recovery Processes in Gibberellic Acid Fermentation

  • Shukla, Ruchi;Srivastava, Ashok K.;Chand, Subhash
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제8권5호
    • /
    • pp.269-278
    • /
    • 2003
  • Gibberellic acid (GA$_3$) is a commercially important plant growth hormone, which is gaining much more attention all over the world due to its effective use in agriculture and brewing industry. Industrially it is produced by submerged fermentation technique using Ascomycetous fungus Gibberella fujikuroi. Solid state and immobilized cell fermentation techniques had also been developed as an alternative to obtain higher yield of GA$_3$. This review summarizes the problems of GA$_3$ fermentation such as production of co-secondary metabolites along with GA$_3$, substrate inhibition and degradation of GA$_3$ to biologically inert compound gibberellenic acid, which limits the yield of GA$_3$ in the fermentation medium. These problems can be overcome by various bioprocessing strategies e.g. two - stage and fed batch cultivation processes. Further research on bioreactor operation strategies such as continuous and / or extractive fermentation with or without cell recycle / retention system need to be investigated for improvement in yield and productivity. Down stream processing for GA$_3$ isolation is also a challenge and procedures available for the same have been critically evaluated.

Control of Rumen Microbial Fermentation for Mitigating Methane Emissions from the Rumen

  • Mitsumori, Makoto;Sun, Weibin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제21권1호
    • /
    • pp.144-154
    • /
    • 2008
  • The rumen microbial ecosystem produces methane as a result of anaerobic fermentation. Methanogenesis in the rumen is thought to represent a 2-12% loss of energy intake and is estimated to be about 15% of total atmospheric methane emissions. While methanogenesis in the rumen is conducted by methanogens, PCR-based techniques have recently detected many uncultured methanogens which have a broader phylogenetic range than cultured strains isolated from the rumen. Strategies for reduction of methane emissions from the rumen have been proposed. These include 1) control of components in feed, 2) application of feed additives and 3) biological control of rumen fermentation. In any case, although it could be possible that repression of hydrogen-producing reactions leads to abatement of methane production, repression of hydrogen-producing reactions means repression of the activity of rumen fermentation and leads to restrained digestibility of carbohydrates and suppression of microbial growth. Thus, in order to reduce the flow of hydrogen into methane production, hydrogen should be diverted into propionate production via lactate or fumarate.

Physicochemical Qualities and Flavor Patterns of Traditional Chinese Vinegars Manufactured by Different Fermentation Methods and Aging Periods

  • Gao, Yaping;Jo, Yunhee;Chung, Namhyeok;Gu, Song-Yi;Jeong, Yong-Jin;Kwon, Joong-Ho
    • Preventive Nutrition and Food Science
    • /
    • 제22권1호
    • /
    • pp.30-36
    • /
    • 2017
  • Physicochemical properties of Fujian Yongchun aged vinegar (FYAV) and Shanxi mature vinegar (SMV) were compared in terms of the fermentation methods applied and aging periods (3, 5, 8, and 10 years), and combined E-nose/E-tongue analyses were performed to assess their flavors. Compared with submerged fermentation-derived FYAV, solid-state fermentation-derived SMV showed higher values of pH, brix, soluble solids, total phenolic content, and antioxidant activity, but not total acidity or total organic acids. Aging period resulted in an increase in pH, total phenolic content, and antioxidant activity. Principal component analysis based on E-tongue/E-nose analyses was performed to distinguish between the vinegars produced by different fermentation methods and under aging periods. Solid-state fermentation and an aging process were considered good techniques for vinegar brewing, considering the various organic acids and high levels of total phenolics and antioxidant activity.

Combined Non-Thermal Microbial Inactivation Techniques to Enhance the Effectiveness of Starter Cultures for Kimchi Fermentation

  • Su-Ji Kim;Sanghyun Ha;Yun-Mi Dang;Ji Yoon Chang;So Yeong Mun;Ji-Hyoung Ha
    • Journal of Microbiology and Biotechnology
    • /
    • 제34권3호
    • /
    • pp.622-633
    • /
    • 2024
  • For quality standardization, the application of functional lactic acid bacteria (LAB) as starter cultures for food fermentation is a well-known method in the fermented food industry. This study assessed the effect of adding a non-thermally microbial inactivated starter culture to kimchi, a traditional Korean food, in standardizing its quality. In this study, pretreatment based on sterilization processes, namely, slightly acidic electrolyzed water (SAEW) disinfection and ultraviolet C light-emitting diode (UVC-LED) of raw and subsidiary kimchi materials were used to reduce the initial microorganisms in them, thereby increasing the efficiency and value of the kimchi LAB starter during fermentation. Pretreatment sterilization effectively suppressed microorganisms that threatened the sanitary value and quality of kimchi. In addition, pretreatment based on sterilization effectively reduced the number of initial microbial colonies in kimchi, creating an environment in which kimchi LAB starters could settle or dominate, compared to non-sterilized kimchi. These differences in the initial microbial composition following the sterilization process and the addition of kimchi LAB starters led to differences in the metabolites that positively affect the taste and flavor of kimchi. The combined processing technology used in our study, that is, pre-sterilization and LAB addition, may be a powerful approach for kimchi quality standardization.

김치담금과 소금절임 (Preparation of Kimchi and Salting)

  • 김순동
    • 한국식품저장유통학회지
    • /
    • 제4권2호
    • /
    • pp.215-225
    • /
    • 1997
  • The review was conducted to organize the desirable salting process from the literatures. In this study the principle of salting and effects of physicochemical changes in salting and salting factors such as cultivars of baechu(Chinese cabbage), concentration of salt, salting temperature, pH condition for salting and quality of kimchi were studied. The method of salting standard, treatment techniques in salting, and selection and mixture ratio of sub-ingredients were also reviewed. In future studies greater attention should be paid to salting and fermentation of kimchi.

  • PDF

Application of Principal Component Analysis and Self-organizing Map to the Analysis of 2D Fluorescence Spectra and the Monitoring of Fermentation Processes

  • Rhee, Jong-Il;Kang, Tae-Hyoung;Lee, Kum-Il;Sohn, Ok-Jae;Kim, Sun-Yong;Chung, Sang-Wook
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제11권5호
    • /
    • pp.432-441
    • /
    • 2006
  • 2D fluorescence sensors produce a great deal of spectral data during fermentation processes, which can be analyzed using a variety of statistical techniques. Principal component analysis (PCA) and a self-organizing map (SOM) were used to analyze these 2D fluorescence spectra and to extract useful information from them. PCA resulted in scores and loadings that were visualized in the score-loading plots and used to monitor various fermentation processes with recombinant Escherichia coli and Saccharomyces cerevisiae. The SOM was found to be a useful and interpretative method of classifying the entire gamut of 2D fluorescence spectra and of selecting some significant combinations of excitation and emission wavelengths. The results, including the normalized weights and variances, indicated that the SOM network is capable of being used to interpret the fermentation processes monitored by a 2D fluorescence sensor.

Engineered bioclogging in coarse sands by using fermentation-based bacterial biopolymer formation

  • Kim, Yong-Min;Park, Taehyung;Kwon, Tae-Hyuk
    • Geomechanics and Engineering
    • /
    • 제17권5호
    • /
    • pp.485-496
    • /
    • 2019
  • Sealing of leakage in waterfront or water-retaining structures is one of the major issues in geotechnical engineering practices. With demands for biological methods as sustainable ground improvement techniques, bioclogging, defined as the reduction in hydraulic conductivity of soils caused by microbial activities, has been considered as an alternative to the chemical grout techniques for its economic advantages and eco-friendliness of microbial by-products. This study investigated the feasibility of bioaugmentation and biostimulation methods to induce fermentation-based bioclogging effect in coarse sands. In the bioaugmentation experiments, effects of various parameters and conditions, including grain size, pH, and biogenic gas generation, on hydraulic conductivity reduction were examined through a series of column experiments while Leuconostoc mesenteroides, which produce an insoluble biopolymer called dextran, was used as the model bacteria. The column test results demonstrate that the accumulation of bacterial biopolymer can readily reduce the hydraulic conductivity by three-to-four orders of magnitudes or by 99.9-99.99% in well-controlled environments. In the biostimulation experiments, two inoculums of indigenous soil bacteria sampled from waterfront embankments were prepared and their bioclogging efficiency was examined. With one inoculum containing species capable of fermentation and biopolymer production, the hydraulic conductivity reduction by two orders of magnitude was achieved, however, no clogging was found with the other inoculum. This implies that presence of indigenous species capable of biopolymer production and their population, if any, play a key role in causing bioclogging, because of competition with other indigenous bacteria. The presented results provide fundamental insights into the bacterial biopolymer formation mechanism, its effect on soil permeability, and potential of engineering bacterial clogging in subsurface.