• 제목/요약/키워드: Fermentation parameters

검색결과 335건 처리시간 0.038초

Influence of Fiber Content and Concentrate Level on Chewing Activity, Ruminal Digestion, Digesta Passage Rate and Nutrient Digestibility in Dairy Cows in Late Lactation

  • Tafaj, M.;Kolaneci, V.;Junck, B.;Maulbetsch, A.;Steingass, H.;Drochner, W.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제18권8호
    • /
    • pp.1116-1124
    • /
    • 2005
  • The influence of fiber content of hay (low-fiber 47% NDF and high-fiber 62% NDF of DM) and concentrate level (high 50% and low 20% of ration DM) on chewing activity, passage rate and nutrient digestibility were tested on four restrict-fed (11.1 to 13.7 kg DM/d) Holstein cows in late lactation. Aspects of ruminal fermentation and digesta particle size distribution were also investigated on two ruminally cannulated (100 mm i.d.) cows of the same group of animals. All digestion parameters studied were more affected by the fiber content of the hay and its ratio to non structural carbohydrates than by the concentrate level. Giving a diet of high-fiber (62% NDF) hay and low concentrate level (20%) increased chewing activity but decreased solid passage rate and total digestibility of nutrients due to a limited availability of fermentable OM in the late cut fiber rich hay. A supplementation of high-fiber hay with 50% concentrate in the diet seems to improve the ruminal digestion of cell contents, whilst a depression of the ruminal fiber digestibility was not completely avoided. Giving a diet of low-fiber (47% NDF) hay and high concentrate level (50%) reduced markedly the chewing and rumination activity, affected negatively the rumen conditions and, consequently, the ruminal digestion of fiber. A reduction of the concentrate level from 50 to 20% in the diet of low-fiber hay improved the rumen conditions as reflected by an increase of the ruminal solid passage rate and of fiber digestibility and in a decrease of the concentration of large particles and of the mean particle size of the rumen digesta and of the faeces. Generally, it can be summarised that, (i) concentrate supplementation is not a strategy to overcome limitations of low quality (fiber-rich) hay, and (ii) increase of the roughage quality is an effective strategy in ruminant nutrition, especially when concentrate availability for ruminants is limited.

Combinatorial Methylerythritol Phosphate Pathway Engineering and Process Optimization for Increased Menaquinone-7 Synthesis in Bacillus subtilis

  • Chen, Taichi;Xia, Hongzhi;Cui, Shixiu;Lv, Xueqin;Li, Xueliang;Liu, Yanfeng;Li, Jianghua;Du, Guocheng;Liu, Long
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권5호
    • /
    • pp.762-769
    • /
    • 2020
  • Vitamin K2 (menaquinone) is an essential vitamin existing in the daily diet, and menaquinone-7 (MK-7) is an important form of it. In a recent work, we engineered the synthesis modules of MK-7 in Bacillus subtilis, and the strain BS20 could produce 360 mg/l MK-7 in shake flasks, while the methylerythritol phosphate (MEP) pathway, which provides the precursor isopentenyl diphosphate for MK-7 synthesis, was not engineered. In this study, we overexpressed five genes of the MEP pathway in BS20 and finally obtained a strain (BS20DFHG) with MK-7 titer of 415 mg/l in shake flasks. Next, we optimized the fermentation process parameters (initial pH, temperature and aeration) in an 8-unit parallel bioreactor system consisting of 300-ml glass vessels. Based on this, we scaled up the MK-7 production by the strain BS20DFHG in a 50-l bioreactor, and the highest MK-7 titer reached 242 mg/l. Here, we show that the engineered strain BS20DFHG may be used for the industrial production of MK-7 in the future.

참죽 분말을 첨가한 식빵의 품질 특성 및 항산화 활성 (Quality Characteristics and Antioxidant Activities of Bread Added with Cedrela sinensis Powder)

  • 김민아;이은지;진소연
    • 한국식생활문화학회지
    • /
    • 제29권1호
    • /
    • pp.111-118
    • /
    • 2014
  • Cedrela sinensis is a Korean traditional wild herb found especially in the southern provinces of Korea. This study investigated the effects of Cedrela sinensis powder on the antioxidant activities and quality characteristics of bread. Bread was prepared with different amounts of Cedrela sinensis powder (at ratios of 0, 1, 2, and 3% of total flour quantity). The results showed that the dough pH, moisture, and fermentation tension levels decreased as Cedrela sinensis powder content increased. Bread volume and specific volume decreased (p<0.01) with an increasing amount of Cedrela sinensis powder (Bread weight increased (p<0.001)). As Cedrela sinensis powder content increased, color 'a' value decreased, and 'b' value increased. Sensory parameters such as color (p<0.01), flavor (p<0.01), appearance (p<0.001), taste, softness (p<0.05), and overall quality (p<0.01) of bread containing 2% Cedrela sinensis powder were measured. Total phenol contents and DPPH free radical scavenging activity of bread significantly increased with increasing Cedrela sinensis powder content (p<0.001). Based on these results, we suggest that Cedrela sinensis can be used for increasing the consumer acceptability and functionality of bread.

흑마늘을 첨가하여 조제한 김치 양념소의 품질특성 (Quality Characteristics of Kimchi Seasoning with Black Garlic)

  • 유광원;황종현;금종화;이경행
    • 한국식품영양학회지
    • /
    • 제29권5호
    • /
    • pp.677-683
    • /
    • 2016
  • To enhance the physiological activities and reduce the off-flavor of garlic in kimchi, we manufactured kimchi seasoning replaced with 25~75% black garlic, we evaluated microbiological, physico-chemical and sensory evaluation. The changes of total aerobic and lactic acid bacteria were similar between the control and the kimchi seasoning replaced with black garlic during storage periods. The lightness of the kimchi seasoning replaced with black garlic was lower than that of the control and decrease of lightness was proportional to the concentration of black garlic. The redness and yellowness of the kimchi seasoning replaced with black garlic were decreased to the concentration of added black garlic and changes of the redness in all the samples were slightly increased during storage periods. But the yellowness did not change during storage periods. The changes of pH and acidity did not differ between the control and the samples of replaced with black garlic during storage periods. The sensory parameters including taste and flavor did not differ among treatments during storage periods. But color and overall acceptance of the control and sample replaced with 25% black garlic were higher than those of the samples replaced with 50 and 75% black garlic.

Neuroprotective Effect of Steamed and Fermented Codonopsis lanceolata

  • Weon, Jin Bae;Yun, Bo-Ra;Lee, Jiwoo;Eom, Min Rye;Ko, Hyun-Jeong;Lee, Hyeon Yong;Park, Dong-Sik;Chung, Hee-Chul;Chung, Jae Youn;Ma, Choong Je
    • Biomolecules & Therapeutics
    • /
    • 제22권3호
    • /
    • pp.246-253
    • /
    • 2014
  • Codonopsis lanceolata has been used as an herbal medicine for several lung inflammatory diseases, such as asthma, tonsillitis, and pharyngitis. Previously, we showed the neuroprotective effect of steamed and fermented C. lanceolata (SFC) in vitro and in vivo. In the current study, the treatment of HT22 cells with SFC decreased glutamate-induced cell death, suggesting that SFC protected HT22 cells from glutamate-induced cytotoxicity. Based on these, we sought to elucidate the mechanisms of the neuroprotective effect of SFC by measuring the oxidative stress parameters and the expression of Bax and caspase-3 in HT22 cells. SFC reduced contents of ROS, $Ca^{2+}$ and NO. Moreover, SFC restored contents of glutathione and glutathione reductase as well as inhibited Bax and caspase-3 activity in HT22 cells. These results indicate that steamed and fermented C. lanceolata (SFC) extract protected HT22 cells by anti-oxidative effect and inhibition of the expression of Bax and caspase-3.

Modeling of Recycling Oxic and Anoxic Treatment System for Swine Wastewater Using Neural Networks

  • Park, Jung-Hye;Sohn, Jun-Il;Yang, Hyun-Sook;Chung, Young-Ryun;Lee, Minho;Koh, Sung-Cheol
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제5권5호
    • /
    • pp.355-361
    • /
    • 2000
  • A recycling reactor system operated under sequential anoxic and oxic conditions for the treatment of swine wastewater has been developed, in which piggery slurry is fermentatively and aerobically treated and then part of the effluent is recycled to the pigsty. This system significantly removes offensive smells (at both the pigsty and the treatment plant), BOD and others, and may be cost effective for small-scale farms. The most dominant heterotrophic were, in order, Alcaligenes faecalis, Brevundimonas diminuta and Streptococcus sp., while lactic acid bacteria were dominantly observed in the anoxic tank. We propose a novel monitoring system for a recycling piggery slurry treatment system through the use of neural networks. In this study, we tried to model the treatment process for each tank in the system (influent, fermentation, aeration, first sedimentation and fourth sedimentation tanks) based upon the population densities of the heterotrophic and lactic acid bacteria. Principal component analysis(PCA) was first applied to identify a relationship between input and output. The input would be microbial densities and the treatment parameters, such as population densities of heterotrophic and lactic acid bacteria, suspended solids(SS), COD, NH$_4$(sup)+-N, ortho-phosphorus (o-P), and total-phosphorus (T-P). then multi-layer neural networks were employed to model the treatment process for each tank. PCA filtration of the input data as microbial densities was found to facilitate the modeling procedure for the system monitoring even with a relatively lower number of imput. Neural network independently trained for each treatment tank and their subsequent combined data analysis allowed a successful prediction of the treatment system for at least two days.

  • PDF

Fabrication of Poly(${\gamma}$-glutamic acid) Monolith by Thermally Induced Phase Separation and Its Application

  • Park, Sung-Bin;Fujimoto, Takashi;Mizohata, Eiichi;Inoue, Tsuyoshi;Sung, Moon-Hee;Uyama, Hiroshi
    • Journal of Microbiology and Biotechnology
    • /
    • 제23권7호
    • /
    • pp.942-952
    • /
    • 2013
  • Monoliths are functional porous materials with a three-dimensional continuous interconnected pore structure in a single piece. A monolith with uniform shape based on poly(${\gamma}$-glutamic acid) (PGA) has been prepared via a thermally induced phase separation technique using a mixture of dimethyl sulfoxide, water, and ethanol as solvent. The morphology of the obtained monolith was observed by scanning electron microscopy and the surface area of the monolith was evaluated by the Brunauer Emmett Teller method. The effects of fabrication parameters such as the concentration and molecular mass of PGA and the solvent composition have been systematically investigated. The PGA monolith was cross-linked with hexamethylene diisocyanate to produce the water-insoluble monolith. The addition of sodium chloride to the phase separation solvent affected the properties of the cross-linked monolith. The swelling ratio of the cross-linked monolith toward aqueous solutions depended on the buffer pH as well as the monolith fabrication condition. Copper(II) ion was efficiently adsorbed on the cross-linked PGA monolith, and the obtained copper-immobilized monolith showed strong antibacterial activity for Escherichia coli. By combination of the characteristic properties of PGA (e.g., high biocompatibility and biodegradability) and the unique features of monoliths (e.g., through-pore structure, large surface area, and high porosity with small pore size), the PGA monolith possesses large potentials for various industrial applications in the biomedical, environmental, analytical, and separation fields.

Assessment of organic matter biodegradation and physico-chemical parameters variation during co-composting of lignocellulosic wastes with Trametes trogii inoculation

  • Fersi, Mariem;Mbarki, Khadija;Gargouri, Kamel;Mechichi, Tahar;Hachicha, Ridha
    • Environmental Engineering Research
    • /
    • 제24권4호
    • /
    • pp.670-679
    • /
    • 2019
  • Lignin complexity molecule makes its biodegradation difficult during lignocellulosic wastes composting. So, the improvement of its biodegradation has usually been considered as an objective. This study aimed to determine the impact of Trametes trogii inoculation on organic matter and particularly on lignin and cellulose during green wastes co-composting with olive mill waste water sludge and coffee grounds. Three types of heaps (H1, H2 and H3) were investigated during 180 d. H3 and H2 were inoculated at the beginning of the process (t0) and 120 d later (t120), respectively while H1 was the control. Results showed the absence of pH stabilization in H3 during the first month. Also, in this period we observed a faster degradation of some easily available organic matter in H3 than in the other heaps. After 120 d, a better cellulose decomposition (25.28%) was noticed in H3 than in H1 and H2 (16%). Inoculation during the second fermentation phase induced supplementary lignin degradation in H2 with a percentage of 35% against 23 and 26% for H1 and H3, respectively. For all the runs, a Fourier Transform Infrared analysis showed aliphatic groups' decrease, OH groups' increase and lignin structural modification.

전통 이화주 양조 중의 주요성분(유기산, 알코올, Fusel Oil) 및 관능적 품질 특성 (Major Components(Organic acids, Alcohols, Fusel Oil) and Sensory Properties of Traditional Ewhaju during Brewing)

  • 김정옥;김종군
    • 한국식품조리과학회지
    • /
    • 제10권1호
    • /
    • pp.1-7
    • /
    • 1994
  • Major quality parameters(organic acids, alcohols, fusel oil and sensory characteristics) of traditional Ewhaju were investigated during brewing. In organic acid contents at immediately after brewing, lactic acid was 155.1mg%, malonic acid was 5.4mg%, succinic acid was 8.9mg%, acetic acid was 7.6mg%, oxalic arid was 1.3mg%, citric and tartaric acid was 27.8mg% and pyruvic acid was 4.8mg% but in 100 days after brewing and one year aged, lactic acid was 1763.3 and 3059.3mg%, malonic acid was 12.3 and 19.3mg%, succinic acid was 11.5 and 23.1mg%, acetic acid was 29.2 and 73.1mg%, oxalic acid was 0.6 and 0.2mg%, citric and tartaric acid was 298.3 and 639.6mg%, and pyruvic acid were 1.1 and 0.3mg%, respectively. All the alcohol contents increased as the fermentation period increased ; the ethyl alcohol was only 0.05fe at immediately after brewing. In the alcohols content of Ewhaju at 100 days after brewing, the ethyl alcohol, methyl alcohol n-propyl alcohol and iso-butyl alcohol were 5.13ft, 47.56 ppm, 37.25 ppm and 19.51 ppm, respectively, Also in the one year aged Ewhaju, the ethyl alcohol was 9.39f), methyl alcohol was 36.34 ppm, Fusel oil was not detected in the first stage of brewing, but it was detected 1.12mg% at 100 days after brewing and 1.18mg% at one year stored sample. A general trend in change of color was almost white immediatly after brewing but a increase in Hunter "b" value and "a" value were observed depending on brewing time prolonged. Taste and overall palatability of Ewhaju after 100 days of brewing were significantly superior(p<0.05, p<0.01).

  • PDF

Characterization of starch and gum arabic-maltodextrin microparticles encapsulating acacia tannin extract and evaluation of their potential use in ruminant nutrition

  • Adejoro, Festus A.;Hassen, Abubeker;Thantsha, Mapitsi S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제32권7호
    • /
    • pp.977-987
    • /
    • 2019
  • Objective: The use of tannin extract and other phytochemicals as dietary additives in ruminants is becoming more popular due to their wide biological actions such as in methane mitigation, bypass of dietary protein, intestinal nematode control, among other uses. Unfortunately, some have strong astringency, low stability and bioavailability, and negatively affecting dry matter intake and digestibility. To circumvent these drawbacks, an effective delivery system may offer a promising approach to administer these extracts to the site where they are required. The objectives of this study were to encapsulate acacia tannin extract (ATE) with native starch and maltodextrin-gum arabic and to test the effect of encapsulation parameters on encapsulation efficiency, yield and morphology of the microparticles obtained as well as the effect on rumen in vitro gas production. Methods: The ATE was encapsulated with the wall materials, and the morphological features of freeze-dried microparticles were evaluated by scanning electron microscopy. The in vitro release pattern of microparticles in acetate buffer, simulating the rumen, and its effect on in vitro gas production was evaluated. Results: The morphological features revealed that maltodextrin/gum-arabic microparticles were irregular shaped, glossy and smaller, compared with those encapsulated with native starch, which were bigger, and more homogenous. Maltodextrin-gum arabic could be used up to 30% loading concentration compared with starch, which could not hold the core material beyond 15% loading capacity. Encapsulation efficiency ranged from $27.7%{\pm}6.4%$ to $48.8%{\pm}5.5%$ in starch and $56.1%{\pm}4.9%$ to $64.8%{\pm}2.8%$ in maltodextrin-gum arabic microparticles. Only a slight reduction in methane emission was recorded in encapsulated microparticles when compared with the samples containing only wall materials. Conclusion: Both encapsulated products exhibited the burst release pattern under the pH conditions and methane reduction associated with tannin was marginal. This is attributable to small loading percentages and therefore, other wall materials or encapsulation methods should be investigated.