• Title/Summary/Keyword: Fermentation agent

Search Result 192, Processing Time 0.025 seconds

Purification and partial characteristics of intracellular aminopeptidase from micrococcus sp. LL3 (Micrococcus sp. LL3가 생성하는 intracellular aminopeptidase의 특성 및 정제)

  • Lee, Si-Kyung;Joo, Hyun-Kyu
    • Applied Biological Chemistry
    • /
    • v.36 no.6
    • /
    • pp.539-546
    • /
    • 1993
  • This paper describes the purification and partial characteristics of aminopeptidase from Microccus sp. LL3 to utilize the microorganism as a potential agent for industrial application for the purpose of shortening ripening period of cheddar cheese. The optimal temperature and pH for enzyme activity were $35^{\circ}C$ and 7.0, respectively for L-leucine-p-nitroanilide as substrate. The enzyme remained stable for 10 minutes up to $50^{\circ}C$. The activity of aminopeptidase was stimulated by $Mg^{++}$ ion but strongly inhibited by $Hg^{++}$, metal complexing reagents, ethylenediaminetetraacetate (EDTA) and 1,10-phenanthroline. The enzyme was thought to be metallopeptidase. This enzyme had a broad substrate specificity, but was inactive on peptide with arginine as N-terminal amino acid. An intracellular aminopeptidase from Micrococcu sp. LL3 was purified by chromatography on DEAE-Sephacel and filtration on Sepacryl S-300. The enzyme has a molecular weight of 43,500.

  • PDF

Characteristics of Flour Ferment Using Lactobacillus acidophilus as Starter (Lactobacillus acidophilus로 발효시킨 밀가루 발효물의 특성)

  • Cha, Wook-Jin;Lee, Si-Kyung;Lee, Jeong-Hoon;Cho, Nam-Ji
    • Korean Journal of Food Science and Technology
    • /
    • v.36 no.1
    • /
    • pp.116-122
    • /
    • 2004
  • Growth of Lactobacillus acidophilus in flour was investigated for production of noodle and bread. L. acidophilus grew when fermented in flour, and growth continued upon fermentation with salt for 72 hr. pH of L. acidophilus-fermented flour with salt decreased up to 72 hr, reaching 3.06. Fermented flour with salt showed no decomposition as compared to that without salt. In flour fermented by L. acidophilus, amounts of lactic and acetic acids produced increased with incubation time, and reached, after 72 hr incubation, 6,821 and 0.191 mg/g, respectively, resulting in significantly higher production of lactic acid. Viscosity of fermented flour with salt increased, whereas that without salt decreased with incubation time. Results reveal L. acidophilus-fermented flour with salt could be applied as effective agent in noodle and bread productions.

Fermented Unpolished Black Rice (Oryza sativa L.) Inhibits Melanogenesis via ERK, p38, and AKT Phosphorylation in B16F10 Melanoma Cells

  • Sangkaew, Orrarat;Yompakdee, Chulee
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.8
    • /
    • pp.1184-1194
    • /
    • 2020
  • Melanin is a major factor that darkens skin color as one of the defense systems to prevent the harmful effects of UV light. However, darkened skin from the localized or systemic accumulation of melanin is viewed in many cultures as an esthetic problem. Consequentially, searching for anti-melanogenic agents from natural sources is very popular worldwide. Previous screening of fermented rice products, obtained from various rice cultivars fermented with different sources of loog-pang (Thai traditional fermentation starter), revealed that the highest ability to reduce the melanin content in B16F10 melanoma cells was from unpolished black rice fermented with a defined starter mixture of microbes isolated from loog-pang E11. The aim of this study was to investigate the mechanism of the fermented unpolished black rice (FUBR) on the inhibition of melanogenesis in B16F10 melanoma cells. The strongest reduction of cellular melanin content was found in the FUBR sap (FUBRS). The melanin reduction activity was consistent with the significant decrease in the intracellular tyrosinase activity. The FUBRS showed no cytotoxic effect to B16F10 melanoma or Hs68 human fibroblast cell lines. It also significantly reduced the transcript and protein expression levels of tyrosinase, tyrosinase-related protein 1 (TYRP-1), TYRP-2, and microphthalmia-associated transcription factor. Furthermore, it induced a significantly increased level of phosphorylated ERK, p38 and Akt signaling pathways, which likely contributed to the negative regulation of melanogenesis. From these results, a model for the mechanism of FUBRS on melanogenesis inhibition was proposed. Moreover, these results strongly suggested that FUBRS possesses anti-melanogenesis activity with high potential for cosmeceutical application as a skin depigmenting agent.

Isolation and Structural Determination of Antifungal Antibiotic from Streptomyces hygroscopicus MJM1004 (Streptomyces hygroscopicus MJM1004가 생산하는 항진균성 항생 물질의 분리 및 구조 결정)

  • Bae, Ju-Yun;Kwon, Hyong-Jin;Suh, Joo-Won
    • Applied Biological Chemistry
    • /
    • v.42 no.4
    • /
    • pp.271-276
    • /
    • 1999
  • Several Streptomyces strains were tested for potent antifungal agents active against phytopathogenic fungi. Among the tested, S. hygroscopicus MJM1004 showed a potent antifungal activity when assayed using Candida albicans as indicator organism. With the strain of MJM1004, fermentation medium for the production of an antifungal agent was developed with varying carbon sources, nitrogen sources, and mineral elements, which resulted in the highest productivity in the medium containing 2% soybean meal, 1% glucose, 2% starch, 0.3% $CaCO_3$, 0.05% $MgSO_4{\cdot}7H_2O$, 0.05% $K_2HPO_4$. The active compound showed a broad spectrum of antifungal activity against several plant pathogenic fungi. The antifungal compound was purified and showed the physicochemical characteristics similar to azalomycin F complex in NMR and MS analysis.

  • PDF

Combination of Poly-Gamma-Glutamate and Cyclophosphamide Enhanced Antitumor Efficacy Against Tumor Growth and Metastasis in a Murine Melanoma Model

  • Kim, Doo-Jin;Kim, Eun-Jin;Lee, Tae-Young;Won, Ji-Na;Sung, Moon-Hee;Poo, Haryoung
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.9
    • /
    • pp.1339-1346
    • /
    • 2013
  • Conventional chemotherapeutic regimens often accompany severe side effects and fail to induce complete regression of chemoresistant or relapsing metastatic cancers. The need for establishing more efficacious anticancer strategies led to the development of a combined modality treatment of chemotherapy in conjunction with immunotherapy or radiotherapy. It has been reported that poly-gamma-glutamate (${\gamma}$-PGA), a natural polymer composed of glutamic acids, increases antitumor activity by activating antigen-presenting cells and natural killer (NK) cells. Here, we investigated the antitumor effect of ${\gamma}$-PGA in combination with cyclophosphamide in a murine melanoma model. Whereas cyclophosphamide alone directly triggered apoptosis of tumor cells in vitro, ${\gamma}$-PGA did not show cytotoxicity in tumor cells. Instead, it activated macrophages, as reflected by the upregulation of surface activation markers and the secretion of proinflammatory factors, such as nitric oxide and tumor necrosis factor ${\alpha}$. When the antitumor effects were examined in a mouse model, combined treatment with cyclophosphamide and ${\gamma}$-PGA markedly suppressed tumor growth and metastasis. Notably, ${\gamma}$-PGA treatment dramatically increased the NK cell population in lung tissues, coinciding with decreased metastasis and increased survival. These data collectively suggest that ${\gamma}$-PGA can act as an immunotherapeutic agent that exhibits a synergistic antitumor effect in combination with conventional chemotherapy.

Optimization of Environmental Parameters for Extracellular Chitinase Production by Trichoderma harzianum SJG-99721 in Bioreactor (Trichoderma harzianum SJG-99721의 체외 분비 chitinase 생산에 미치는 생물 반응기에서의 반응 최적화 연구)

  • 이호용
    • Korean Journal of Environmental Biology
    • /
    • v.22 no.1
    • /
    • pp.167-170
    • /
    • 2004
  • A self-directing optimization procedure was applied to determine the best environmental factors in operating the bioreactor. The self-directing optimization process was employed to determine the best conditional combination of multi parameters, pH, temperature, aeration rate and mixing rate toy maximal production of chitinase by Trichoderma harzianum SJG-99721 in batch mode fermentation. Among these factors, the parameters of pH and aeration rate were found to be particularly important on mycellial growth and chitinase activity. pH 4.89, an aeration rate of 3.22 ι per minute and an agitation rate of 225 rpm was found to be the best combination. By the optimization, chitinase activity was dramatically increased from an initial value of 4.221 U under basic conditions to n final value of 16.825 U.

Hydrogen Production from Fruit Wastes by Immobilized Cells of Enterobacter cloacae VJ-1 (Enterobacter cloacae YJ-1의 고정화세포에 의한 과일 폐기물로부터 수소생산)

  • Lee, Ki-Seok;Huh, Yang-Il;Chung, Seon-Yong;Kang, Chang-Min
    • KSBB Journal
    • /
    • v.20 no.6
    • /
    • pp.447-452
    • /
    • 2005
  • The hydrogen production using immobilized cellsl was conducted using fruit wastewaters at various culture conditions. Three kinds of fruit wastewaters, melon, watermelon and pear were used. Sodium alginate was used as immobilization material. Among them, concentration of reducing sugar which was one of the main components in fruit was the highest at watermelon wastewater, and also hydrogen production was the highest as 2319.2 mL/L in it. Although hydrogen production was not much changed according to sodium alginate concentration, its production was the most at 3%(w/v). As bead size as small, hydrogen production was higher. With inspection of interior, it confirmed that the cell grew well in bead. But the addition of amino acids using as agent for metabolite production had almost no affected on hydrogen productivity. The effective range of $FeSO_4$ addition on hydrogen production were up to 1.2 g/L, and above the concentration, it inhibited the productivity. Organic acids produced during watermelon fermentation were mainly lactic acid, butyric acid, abd acetic acid; and a little of propionic acid.

Effect of Phellinus baumii -Biotransformed Soybean Powder on Lipid Metabolism in Rats

  • Kim, Dae Ik;Kim, Kil Soo;Kang, Ji Hyuk;Kim, Hye Jeong
    • Preventive Nutrition and Food Science
    • /
    • v.18 no.2
    • /
    • pp.98-103
    • /
    • 2013
  • In this study, we evaluated the hypolipidemic and antioxidative effects of biotransformed soybean powder (BTS; Phellinus baumii-fermented soybean) on lipid metabolism in rats. Sprague-Dawley (SD) male rats were divided into basal diet group (BA), high fat diet group (HF), high fat diet containing 10% BTS group (10 BTS), and high fat diet containing 20% BTS group (20 BTS). Changes in the content of various isoflavones, including daidzein and genistein, within the soybean after fermentation to BTS were investigated. The levels of daidzein and genistein were $149.28{\mu}g/g$ and $364.31{\mu}g/g$, respectively. After six weeks experimental period, Food efficiency ratio in the 10 and 20 BTS group was significantly lower than the HF group (P<0.05). Total serum levels of cholesterol, triglycerides, low-density lipoprotein cholesterol, and atherogenic index ratio in the 10 or 20 BTS group were significantly lower than the HF group. The levels of alanine aminotransferase, aspartate aminotransferase and thiobarbituric acid reactive substance were significantly lower in the groups that received 10% and 20% BTS than the HF. The activities of SOD and CAT were significantly higher in the 10 and 20 BTS group than the HF group. The activity of XO in the 10 and 20 BTS group was significantly lower than in the HF group by 20% and 23%, respectively. In conclusion, these data suggest that BTS is an effective agent in improving lipid metabolism and antioxidant enzyme system.

Hypoglycemic and Hypocholesterolemic Effects of Botryosphaeran from Botryosphaeria rhodina MAMB-05 in Diabetes-Induced and Hyperlipidemia Conditions in Rats

  • Miranda-Nantes, Carolina C.B.O.;Fonseca, Eveline A.I.;Zaia, Cassia T.B.V.;Dekker, Robert F.H.;Khaper, Neelam;Castro, Inar A.;Barbosa, Aneli M.
    • Mycobiology
    • /
    • v.39 no.3
    • /
    • pp.187-193
    • /
    • 2011
  • Botryosphaeran, a water-soluble exopolysaccharide of the ${\beta}-(1{\rightarrow}3;1{\rightarrow}6)$-D-glucan type that has been isolated from the culture medium of Botryosphaeria rhodina MAMB-05 grown in submerged fermentation using glucose as the sole carbon source, was previously demonstrated to be non-genotoxic in peripheral blood and bone marrow, and exhibited strong anticlastogenic activity. In the present study, the effects of botryosphaeran were investigated in streptozotocin-induced diabetic rats as well as in high-fat diet-fed hyperlipidemic Wistar rats. The plasma glucose level was reduced by 52% in the diabetic group of rats after administration of 12 mg botryosphaeran/kg body weight of the rats (b.w.)/day by gavage over 15 days. A reduction in the median ration intake was accompanied by an increase in the median body weight gain, as well as the efficiency of food conversion. These results demonstrate that botryosphaeran has protective effects by reducing the symptoms of cachexia in Diabetes mellitus. Botryosphaeran administered by gavage at a concentration of 12 mg botryosphaeran/kg b.w./day over 15 days also reduced the plasma levels of total cholesterol and low density lipoprotein-cholesterol by 18% and 27%, respectively, in hyperlipidemic rats. Based on these findings, we conclude that botryosphaeran possesses hypoglycemic and hypocholesterolemic properties in conditions of diabetes mellitus and hyperlipidemia, respectively, and may be used as an oral anti-diabetic agent.

In Vitro Mutagenicity Tests on Palatinose and Palatinose Syrup (팔라티노스 및 팔라티노스 시럽에 대한 in vitro 변이원성 시험)

  • Baek, Nam-Jin;Kang, Jae-Ku;Kim, Jeong-Hwan;Kim, Dal-Hyun;Chun, Young-Jung;Kim, Je-Hak
    • Korean Journal of Food Science and Technology
    • /
    • v.29 no.4
    • /
    • pp.804-807
    • /
    • 1997
  • Palatinose is a disaccharide molecule which can substitute sucrose as a sweetening agent. A microbial fermentation technology has been developed to produce palatinose. In order to verify the safety of palatinose products, we have performed 1) bacterial reverse mutation test using Salmonella typhimurium TA1535, TA1537, TA98 and TA100, and 2) in vitro chromosome aberration test using Chinese Hamster Lung (CHL) cell. In bacterial reverse mutation test, both palatinose and palatinose syrup did not induce any significant increase of $His^{+}$ revertants up to 10 mg/plate. In in vitro chromosome aberration test, palatinose and palatinose syrup also did not cause any significant increase of chromosome aberrant cells up to 5 mg/mL. These results suggest that palatinose products have no mutagenic potential in these in vitro mutagenicity tests.

  • PDF