DOI QR코드

DOI QR Code

Fermented Unpolished Black Rice (Oryza sativa L.) Inhibits Melanogenesis via ERK, p38, and AKT Phosphorylation in B16F10 Melanoma Cells

  • Sangkaew, Orrarat (Department of Microbiology, Faculty of Science, Chulalongkorn University) ;
  • Yompakdee, Chulee (Department of Microbiology, Faculty of Science, Chulalongkorn University)
  • Received : 2020.03.11
  • Accepted : 2020.05.06
  • Published : 2020.08.28

Abstract

Melanin is a major factor that darkens skin color as one of the defense systems to prevent the harmful effects of UV light. However, darkened skin from the localized or systemic accumulation of melanin is viewed in many cultures as an esthetic problem. Consequentially, searching for anti-melanogenic agents from natural sources is very popular worldwide. Previous screening of fermented rice products, obtained from various rice cultivars fermented with different sources of loog-pang (Thai traditional fermentation starter), revealed that the highest ability to reduce the melanin content in B16F10 melanoma cells was from unpolished black rice fermented with a defined starter mixture of microbes isolated from loog-pang E11. The aim of this study was to investigate the mechanism of the fermented unpolished black rice (FUBR) on the inhibition of melanogenesis in B16F10 melanoma cells. The strongest reduction of cellular melanin content was found in the FUBR sap (FUBRS). The melanin reduction activity was consistent with the significant decrease in the intracellular tyrosinase activity. The FUBRS showed no cytotoxic effect to B16F10 melanoma or Hs68 human fibroblast cell lines. It also significantly reduced the transcript and protein expression levels of tyrosinase, tyrosinase-related protein 1 (TYRP-1), TYRP-2, and microphthalmia-associated transcription factor. Furthermore, it induced a significantly increased level of phosphorylated ERK, p38 and Akt signaling pathways, which likely contributed to the negative regulation of melanogenesis. From these results, a model for the mechanism of FUBRS on melanogenesis inhibition was proposed. Moreover, these results strongly suggested that FUBRS possesses anti-melanogenesis activity with high potential for cosmeceutical application as a skin depigmenting agent.

Keywords

References

  1. Hearing VJ. 2005. Biogenesis of pigment granules: a sensitive way to regulate melanocyte function. J. Dermatol. Sci. 37: 3-14. https://doi.org/10.1016/j.jdermsci.2004.08.014
  2. Hearing VJ. 2011. Determination of melanin synthetic pathways. J. Invest. Dermatol. 131: E8-E11. https://doi.org/10.1038/skinbio.2011.4
  3. Chan CF, Huang CC, Lee MY, Lin YS. 2014. Fermented broth in tyrosinase- and melanogenesis inhibition. Molecules 19: 13122-13135. https://doi.org/10.3390/molecules190913122
  4. Chang TS. 2009. An updated review of tyrosinase inhibitors. Int. J. Mol.Sci. 10: 2440-2475. https://doi.org/10.3390/ijms10062440
  5. Smit N, Vicanova J, Pavel S. 2009. The hunt for natural skin whitening agents. Int. J. Mol. Sci. 10: 5326-5349. https://doi.org/10.3390/ijms10125326
  6. Alam MB, Bajpai VK, Lee J, Zhao P, Byeon JH, Ra JS, et al. 2017. Inhibition of melanogenesis by jineol from Scolopendra subspinipes mutilans via MAP-Kinase mediated MITF downregulation and the proteasomal degradation of tyrosinase. Sci. Rep. 7: 45858. https://doi.org/10.1038/srep45858
  7. Chung SY, Seo YK, Park JM, Seo MJ, Park JK, Kim JW, et al. 2009. Fermented rice bran downregulates MITF expression and leads to inhibition of alpha-MSH-induced melanogenesis in B16F1 melanoma. Biosci. Biotechnol. Biochem. 73: 1704-1710. https://doi.org/10.1271/bbb.80766
  8. Yao C, Oh JH, Oh IG, Park CH, Chung JH. 2013. Shogaol inhibits melanogenesis in B16 mouse melanoma cells through activation of the ERK pathway. Acta Pharmacol. Sin. 34: 289-294. https://doi.org/10.1038/aps.2012.134
  9. Jeong HS, Gu GE, Jo AR, Bang JS, Yun HY, Baek KJ, et al. 2015. Baicalin-induced Akt activation decreases melanogenesis through downregulation of microphthalmia-associated transcription factor and tyrosinase. Eur. J. Pharmacol. 761: 19-27. https://doi.org/10.1016/j.ejphar.2015.04.028
  10. Saito H, Yasumoto K, Takeda K, Takahashi K, Yamamoto H, Shibahara S. 2003. Microphthalmia-associated transcription factor in the Wnt signaling pathway. Pigment Cell Res. 16: 261-265. https://doi.org/10.1034/j.1600-0749.2003.00039.x
  11. Funasaka Y, Komoto M, Ichihashi M. 2000. Depigmenting effect of alpha-tocopheryl ferulate on normal human melanocytes. Pigment Cell Res. 13 Suppl 8: 170-174. https://doi.org/10.1111/j.0893-5785.2000.130830.x
  12. Kwak YJ, Kim KS, Kim KM, Yu HY, Chung E, Kim SJ, et al. 2011. Fermented Viola mandshurica inhibits melanogenesis in B16 melanoma cells. Biosci. Biotechnol. Biochem. 75: 841-847. https://doi.org/10.1271/bbb.100641
  13. Chunta S, Prathepha P, Thiha, Jongdee B. 2014. Nuances of traditional knowledge in utilization of rice landraces by a farming community in North-Eastern Thailand. Indian J. Tradit Know. 13: 473-483.
  14. Vichapong J, Sookserm M, Srijesdaruk V, Swatsitang P, Srijaranai S. 2010. High performance liquid chromatographic analysis of phenolic compounds and their antioxidant activities in rice varieties. Lwt-Food Sci Technol. 43: 1325-1330. https://doi.org/10.1016/j.lwt.2010.05.007
  15. Kim D-O, Heo HJ, Kim YJ, Yang HS, Lee CY. 2005. Sweet and sour cherry phenolics and their protective effects on neuronal cells. J. Agr. Food Chem. 53: 9921-9927. https://doi.org/10.1021/jf0518599
  16. Jakobs S, Fridrich D, Hofem S, Pahlke G, Eisenbrand G. 2006. Natural flavonoids are potent inhibitors of glycogen phosphorylase. Mol. Nutr. Food Res. 50: 52-57. https://doi.org/10.1002/mnfr.200500163
  17. Kano M, Takayanagi T, Harada K, Makino K, Ishikawa F. 2005. Antioxidative activity of anthocyanins from purple sweet potato, Ipomoera batatas cultivar Ayamurasaki. Biosci. Biotechnol. Biochem. 69: 979-988. https://doi.org/10.1271/bbb.69.979
  18. Soradech S, Reungpatthanaphong P, Tangsatirapakdee S, Panaphong K, Thammachat T, Manchun, S. et al. 2016. Radical scavenging, antioxidant and melanogenesis stimulating activities of different species of rice (Oryza sativa L.) extracts for hair treatment formulation. Thai J. Pharmaceutical Sci. 40: 92-95.
  19. Lin YW, Chiang BH. 2008. Anti-tumor activity of the fermentation broth of Cordyceps militaris cultured in the medium of Radix astragali. Process Biochem. 43: 244-250. https://doi.org/10.1016/j.procbio.2007.11.020
  20. Miyake Y, Fukumoto S, Okada M, Sakaida K, Nakamura Y, Osawa T. 2005. Antioxidative catechol lignans converted from sesamin and sesaminol triglucoside by culturing with Aspergillus. J. Agric. Food Chem. 53: 22-27. https://doi.org/10.1021/jf048743h
  21. Nakano D, Kwak CJ, Fujii K, Ikemura K, Satake A, Ohkita M, et al. 2006. Sesamin metabolites induce an endothelial nitric oxidedependent vasorelaxation through their antioxidative property-independent mechanisms: Possible involvement of the metabolites in the antihypertensive effect of sesamin. J. Pharmacol. Exp. Ther. 318: 328-335. https://doi.org/10.1124/jpet.105.100149
  22. Taechavansonyoo A, Thaniyavarn J, Yompakdee C. 2013. Identification of the molds and yeasts characteristic of a superior Loogpang, starter of Thai rice-based alcoholic beverage Sato. Asian J. Food Agro-Industry 6: 24-38.
  23. Zhao M, Zhang DL, Su XQ, Duan SM, Wan JQ, Yuan WX, et al. 2015. An integrated metagenomics/metaproteomics investigation of the microbial communities and enzymes in solid-state fermentation of Pu-erh tea. Sci. Rep. 5: 10117. https://doi.org/10.1038/srep10117
  24. Alimolaei M, Golchin M. 2016. An efficient DNA extraction method for Lactobacillus casei, a Difficult-to-Lyse bacterium. Int. J. Enteric. Pathog. 4: e32472.
  25. Abd Razak DL, Abd Rashid NY, Jamaluddin A, Sharifudin SA, Abd Kahar A, Long K. 2017. Cosmeceutical potentials and bioactive compounds of rice bran fermented with single and mix culture of Aspergillus oryzae and Rhizopus oryzae. J. Saudi Soc. 16: 127-134.
  26. Coecke S, Balls M, Bowe G, Davis J, Gstraunthaler G, Hartung T, et al. 2005. Guidance on good cell culture practice - A report of the second ECVAM task force on Good Cell culture practice. Atla-Altern Lab Anim. 33: 261-287. https://doi.org/10.1177/026119290503300313
  27. Tachibana Y, Kikuzaki H, Lajis NH, Nakatani N. 2001. Antioxidative activity of carbazoles from Murraya koenigii leaves. J. Agr. Food Chem. 49: 5589-5594. https://doi.org/10.1021/jf010621r
  28. Jun HJ, Lee JH, Cho BR, Seo WD, Kang HW, Kim DW, et al. 2012. Dual inhibition of gamma-oryzanol on cellular melanogenesis: inhibition of tyrosinase activity and reduction of melanogenic gene expression by a protein kinase a-dependent mechanism. J. Nat. Prod. 75: 1706-1711. https://doi.org/10.1021/np300250m
  29. Livak KJ, Schmittgen T. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-DDCt method. Methods. 25: 402-408. https://doi.org/10.1006/meth.2001.1262
  30. Luangkhlaypho A, Pattaragulwanit K, Leepipatpiboon N, Yompakdee C. 2014. Development of a defined starter culture mixture for the fermentation of sato, a Thai rice-based alcoholic beverage. Scienceasia 40: 125-134. https://doi.org/10.2306/scienceasia1513-1874.2014.40.125
  31. Khan MT. 2012. Novel tyrosinase inhibitors from natural resources - their computational studies. Curr. Med. Chem. 19: 2262-2272. https://doi.org/10.2174/092986712800229041
  32. Liang C, Lim JH, Kim SH, Kim DS. 2012. Dioscin: a synergistic tyrosinase inhibitor from the roots of Smilax China. Food Chem. 134: 1146-1148. https://doi.org/10.1016/j.foodchem.2012.03.003
  33. Findlay GH, de Beer HA. 1980. Chronic hydroquinone poisoning of the skin from skin-lightening cosmetics. A South African epidemic of ochronosis of the face in dark-skinned individuals. S. Afr. Med. J. 57: 187-190.
  34. O'Donoghue JL. 2006. Hydroquinone and its analogues in dermatology - a risk-benefit viewpoint. J. Cosmet. Dermatol. 5: 196-203. https://doi.org/10.1111/j.1473-2165.2006.00253.x
  35. Parvez S, Kang M, Chung HS, Cho C, Hong MC, Shin MK, et al. 2006. Survey and mechanism of skin depigmenting and lightening agents. Phytother. Res. 20: 921-934. https://doi.org/10.1002/ptr.1954
  36. Manosroi A, Ruksiriwanich W, Kietthanakorn B-o, Manosroi W, Manosroi J. 2011. Relationship between biological activities and bioactive compounds in the fermented rice sap. Food Res. Int. 44: 2757-2765. https://doi.org/10.1016/j.foodres.2011.06.010
  37. Sangkaew A, Krungkrai J, Yompakdee C. 2018. Development of a high throughput yeast-based screening assay for human carbonic anhydrase isozyme II inhibitors. AMB Express. 8: 124. https://doi.org/10.1186/s13568-018-0653-9
  38. de Llanos R, Querol A, Peman J, Gobernado M, Fernandez-Espinar MT. 2006. Food and probiotic strains from the Saccharomyces cerevisiae species as a possible origin of human systemic infections. Int. J. Food Microbiol. 110: 286-290. https://doi.org/10.1016/j.ijfoodmicro.2006.04.023
  39. Abd Rashid NY, Abd Razak D, Jamaluddin A, Sharifudin S, Long K. 2015. Bioactive compounds and antioxidant activity of rice bran fermented with lactic acid bacteria. Malays J. Microbiol. 11: 156-162.
  40. Cheng k-C, Wu J-Y, Lin J-T, Liu W-H. 2013. Enhancements of isoflavone aglycones, total phenolic content, and antioxidant activity of black soybean by solid-state fermentation with Rhizopus spp. Eur. Food Res. Technol. 236:1107-1113. https://doi.org/10.1007/s00217-013-1936-7
  41. Lee IH, Hung Y-H, Chou C-C. 2008. Solid-state fermentation with fungi to enhance the antioxidative activity, total phenolic and anthocyanin contents of black bean. Int. J. Food Microbiol. 121: 150-156. https://doi.org/10.1016/j.ijfoodmicro.2007.09.008
  42. Kim YJ, Kang KS, Yokozawa T. 2008. The anti-melanogenic effect of pycnogenol by its anti-oxidative actions. Food Chem. Toxicol. 46: 2466-2471. https://doi.org/10.1016/j.fct.2008.04.002
  43. Hao J, Zhu H, Zhang ZQ, Yang SL, Li HR. 2015. Identification of anthocyanins in black rice (Oryza sativa L.) by UPLC/Q-TOF-MS and their in vitro and in vivo antioxidant activities. J. Cereal Sci. 64: 92-99. https://doi.org/10.1016/j.jcs.2015.05.003
  44. Busca R, Ballotti R. 2000. Cyclic AMP a key messenger in the regulation of skin pigmentation. Pigment Cell Res. 13: 60-69. https://doi.org/10.1034/j.1600-0749.2000.130203.x
  45. Englaro W, Bertolotto C, Busca R, Brunet A, Pages G, Ortonne JP, et al. 1998. Inhibition of the mitogen-activated protein kinase pathway triggers B16 melanoma cell differentiation. J. Biol. Chem. 273: 9966-9970. https://doi.org/10.1074/jbc.273.16.9966
  46. Kim DS, Hwang ES, Lee JE, Kim SY, Kwon SB, Park KC. 2003. Sphingosine-1-phosphate decreases melanin synthesis via sustained ERK activation and subsequent MITF degradation. J. Cell Sci. 116: 1699-1706. https://doi.org/10.1242/jcs.00366
  47. Oka M, Nagai H, Ando H, Fukunaga-Kalabis M, Matsumura M, Araki K, et al. 2000. Regulation of melanogenesis through Phosphatidylinositol 3-Kinase-Akt pathway in human G361 melanoma Cells. J. Invest. Dermatol. 115: 699-703. https://doi.org/10.1046/j.1523-1747.2000.00095.x
  48. Wu PY, You YJ, Liu YJ, Hou CW, Wu CS, Wen KC, et al. 2018. Sesamol inhibited melanogenesis by regulating melanin-related signal transduction in B16F10 Cells. Int. J. Mol. Sci. 19: 1108. https://doi.org/10.3390/ijms19041108
  49. Dong Y, Cao J, Wang H, Zhang J, Zhu Z, Bai R, et al. 2010. Nitric oxide enhances the sensitivity of alpaca melanocytes to respond to alpha-melanocyte-stimulating hormone by up-regulating melanocortin-1 receptor. Biochem. Biophys. Res. Commun. 396: 849-853. https://doi.org/10.1016/j.bbrc.2010.05.001
  50. Horikoshi T, Nakahara M, Kaminaga H, Sasaki M, Uchiwa H, Miyachi Y. 2000. Involvement of nitric oxide in UVB-induced pigmentation in guinea pig skin. Pigment Cell Res. 13: 358-363. https://doi.org/10.1034/j.1600-0749.2000.130509.x

Cited by

  1. Metaproteomic investigation of functional insight into special defined microbial starter on production of fermented rice with melanogenesis inhibition activity vol.15, pp.11, 2020, https://doi.org/10.1371/journal.pone.0241819
  2. Determination of Phenolic Content, Antioxidant Activity, and Tyrosinase Inhibitory Effects of Functional Cosmetic Creams Available on the Thailand Market vol.10, pp.7, 2020, https://doi.org/10.3390/plants10071383
  3. Linarin enhances melanogenesis in B16F10 cells via MAPK and PI3K/AKT signaling pathways vol.64, pp.4, 2021, https://doi.org/10.3839/jabc.2021.060