• Title/Summary/Keyword: Fenton′s oxidation

Search Result 51, Processing Time 0.023 seconds

Treatment Efficiency of Complex Wastewater by Fenton's Oxidation Condition (펜톤산화에 따른 복합폐수의 처리효율연구)

  • Sung, Il-Wha
    • Journal of Environmental Health Sciences
    • /
    • v.32 no.5 s.92
    • /
    • pp.446-450
    • /
    • 2006
  • In order to treat the wastewater containing organic compound, pre-treatment system connected with MSP(molecular separation process) was investigated. With the aim of selecting an optimum process of Fenton's oxidation, removal efficiency of each process in the optimum reaction condition was recommended. The $Fe/H_{2}O_{2}$(ferric sulfate to hydrogen peroxide)reagent is referred to as the Fenton's regent, which produces hydroxyl radicals by the interaction of Fe with $H_{2}O_{2}$. The powerful oxidizing ability and extreme kinetic reactively of the hydroxyl radical was well established. Increasing dosage of $Fe/H_{2}O_{2}$ increased removal efficiency as molar ratio of $Fe/H_{2}O_{2}$ between 0.2 and 2.5. Optimum dosage of molar ratio was 1. The removal efficiency for reaction condition was increased as pH decreased when the molar ratio of $Fe/H_{2}O_{2}$ was 1.7. Fenton's oxidation was most efficient in the reaction time 35 min for complex wastewater. Also, coagulation aid experiments using kaolin resulted in 3% of kaolin dosage.

Methodology Development for the Reuse of Sludge Generated from Fenton's Oxidation Process (펜톤산화 공정에서 발생하는 슬러지의 재활용 방안)

  • Koo, Tai-Wan;Cho, Soon-Haing;Choi, Young-Soo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.6
    • /
    • pp.1083-1091
    • /
    • 2000
  • The objective of this study is to develop effective and economical treatment processes for the removal of non-biodegradable organics by reusing the sludge generated from Fenton's Oxidation Process. It was found that about 50% of coagulants and 50% of catalyst can be reduced by reusing the sludge generated from Fenton's Oxidation Process. It was also found that the amount of sludge generation can be reduced in coagulation process and Fenton's Oxidation Process. From the results of bench-scale test, it was found that the average removal efficiency increased to 8.5% and the amount of sludge generation was reduced up to 35% by reusing the sludge as coagulant. The average organic removal efficiency increased to 5.3% and the amount of sludge generation was reduced up to 14% by reusing the sludge as catalyst in Fenton's Oxidation. It can be concluded that the reuse of sludge generated from Fenton's Oxidation Process would be reduced cost of chemical consumption and Fenton's sludge treatment.

  • PDF

Treatment of High Strength para-Nitrophenol using Fenton-like Oxidation Catalyzed by Steeler's Dust (제강분진을 촉매로 활용한 펜톤유사산화에 의한 고농도 para-Nitrophenol의 처리)

  • 배범한;정재훈;이성재;장윤영;박규홍;장윤석
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2000.11a
    • /
    • pp.136-139
    • /
    • 2000
  • Fenton-like oxidation of para-nitrophenol(PNP) was studied using hydrogen peroxide iii combination with steeler's dust substituted for ferrous iron in Fenton's reaction. Various factors critical in the degradation of PNP were studied, including hydrogen peroxide dosage, concentration of steeler's dust. and initial pH. Experimental results showed that 1,000mg/L PNP and its oxidation intermediate could be mostly decomposed within 30m1n by 10g/L steeler's dust, 0.25% hydrogen peroxide, and initila pH of 3.0. The reaction rate constant (k) of CODcr concentration were calculated with the addition of steeler's dust(0.0059 min$^{-1}$ (g/L)$^{-1}$ ) and hydrogen peroxide(0.2965 min$^{-1}$ (%)$^{-1}$ ), respectively.

  • PDF

Applicability of the lenten류s Reagent Oxidation to Biological Fixed-Film Process for Reuse of Effluents from the Petrochemical Wastewster Effluent Treatment Plant (석유화학폐수 처리장 방류수의 재이용을 위한 고정생물막 공정에서 Fenton 산화전처리의 적응가능성)

  • Lee, Kyu-Hoon;Kim, Mi-Hwa;Park, Tae-Joo
    • Journal of Environmental Science International
    • /
    • v.4 no.5
    • /
    • pp.501-508
    • /
    • 1995
  • Reuse of industrial effluents through the cooling systems in a petrochemical complex was described. The partial oxidation of the effluents from the biological treatment plant was examined, using Fenton's reagent as a pretreatment step prior to a next treatment of the effluents. Next tertiary treatment using fixed-film reactor resulted in marked reductions in COD and suspended solids. The continuous fixed-film process with Fenton oxidation pretreatment showed a 23% increase in the COD removal efficiency when compared to that without pretreatment of Fenton oxidation under the volumetric organic loading rate of 0.1 kg COD/m3/day. The Fenton oxidation treatment seemed to be a possible method for tertiary biological treatment to reduce the residual toxicity with the enhanced biodegradation of the effluents.

  • PDF

Degradation of energetic compounds using an integrated zero-valent iron-Fenton process

  • Oh Seok-Young;Kim Byung J.;Chiu Pei C.;Cha Daniel K.
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.493-500
    • /
    • 2003
  • The effect of reductive treatment with elemental iron on the extent of mineralization by Fenton oxidation was studied for the explosive 2,4,6-trinitrotoluene (TNT) and hexahydro-l,3,5-trinitro-l,3,5-triazine (RDX) using a completely-stirred tank reactor (CSTR). The results support the hypothesis that TNT and RDX are reduced with elemental iron to products that are oxidized more rapidly and completely by Fenton's reagent. Iron pretreatment enhanced the extent of TOC removal by approximately $20\%\;and\;60\%$ for TNT and RDX, respectively. Complete TOC removal was achieved for TNT and RDX solutions with iron pretreatment under optimal conditions. On the other hand, without iron pretreatment, complete mineralization of TNT and RDX solutions were not achieved even with much higher $H_2O_2$ and $Fe^{2+}$ concentrations. The bench-scale iron treatment-Fenton oxidation integrated system showed more than $95\%$ TOC removal for TNT and RDX solutions under optimal conditions. The proposed zero-valent iron-Fenton process was evaluated with pink water from the Iowa Army ammunition plant. Results from batch and column experiments show that TNT, RDX, and octahydro-l,3,5,7-tetranitro-l,3,5,7-tetrazocine (HMX) were completely removed from the pink water and that triaminotoluene (TAT) and ${NH_4}^+$ were recovered as products in reduction with zero-valent iron. By using an integrated system, $83.3\pm4.2\%$ of TOC was removed in a CSTR with 10 mM of $Fe^{2+}$ and 50 mM of $H_2O_2$. These results suggest that the reduction products of TNT and RDX are more rapidly and completely mineralized by Fenton oxidation and that a sequential iron treatment-Fenton oxidation process may be a viable technology for pink water treatment.

  • PDF

Organic Wastewater Treatment Using Modified Fenton's Oxidation (변형 펜턴산화법을 이용한 유기폐수의 처리)

  • Kim, Ji Yeon;Yoon, Tai Il;Park, Se Jin
    • Clean Technology
    • /
    • v.5 no.1
    • /
    • pp.49-61
    • /
    • 1999
  • Fenton's oxidation can improve the biodegradability of refractory organic wastewater by generating $OH{\cdot}$ which is one of the most reactive species. Fenton's reagent is used to treat a variety of industrial waste containing a range of toxic organic compounds. But this process cannot be economical because of high chemical cost of $H_2O_2$, ferrous ion solution and high sludge disposal cost. In this study, we proposed a modified Fenton's oxidation process which can reduce the reagent cost and obtain better removal efficiencies with less Fenton's reagents, and have a good potential of sludge recycling. In modified Fenton reaction, ferrous ion solution is adjusted to optimal pH with NaOH. Then it added to the sample and reacted to $H_2O_2$. For the experiment, synthetic wastewater made of phenol, which is one of the typical water pollutants, was used and the ionic strength of this wastewater was controlled by adding $NaHCO_3$. The effects of DO, ionic strength, and $H_2O_2$ dosing methods were investigated. As a result, modified Fenton's treatment efficiencies are better than conventional Fenton's reaction treating leachate and dyeing wastewater. And modified Fenton's treatment efficiencies combined to the sludge recycling for a half of Iron dosage are as good as the conventional Fenton's for a normal Iron dosage.

  • PDF

Spent-GAC Regeneration Using Variable Frequency Sono-Fenton Oxidation (가변 주파수 Sono-Fenton 산화를 이용한 Spent-GAC 재생기술)

  • Joo, Soobin;Lee, Sangmin;Kim, Hyungjun;Shim, Intae;Kim, Heejin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.4
    • /
    • pp.449-458
    • /
    • 2023
  • As an adsorption technology for dissolved organic matter, the adsorption capacity of granular activated carbon, GAC, can be applied, but activated carbon whose adsorption capacity is significantly reduced by use is inevitably replaced or regenerated. However, due to the economics of replacement cost, thermal regeneration method is used commercially, but high energy cost and loss of activated carbon occur under high temperature conditions above 800℃. In this study, the Sono-Fenton method, a multi-oxidation technology that combines Fenton oxidation and ultrasonic oxidation, was applied to improve the regeneration efficiency of spent GAC used to treat dissolved organic matter in combined sewer overflows (CSOs), and the regeneration efficiency of spent GAC by oxidant and ultrasonic frequency was investigated. In the applied Sono-Fenton treatment, the highest regeneration efficiency of 68.5% was obtained under the regeneration conditions of Fe2+ 10 mmol/L, H2O2 concentration 1,000 mmol/L, ultrasonic treatment time of 120 min, and ultrasonic frequency of 40 kHz. And similar efficiency was also obtained at 750 kHz, while ultrasonic waves of other frequencies had poor regeneration efficiency, and the magnitude of frequency and GAC regeneration efficiency did not show a linear relationship. In the case of continuous operation of the GAC adsorption tower with CSOs prepared by diluting raw sewage, about 700 hours of operation without regeneration was possible, and as a result of applying one Sono-Fenton treatment, 40-70% CODcr removal efficiency was obtained during a total of 1,000 hours of GAC adsorption operation.

Treatment Study of Textile Wastewater by Fenton's Oxidation (펜톤 산화반응에 의한 염색폐수처리 연구)

  • 박영규
    • Journal of environmental and Sanitary engineering
    • /
    • v.15 no.4
    • /
    • pp.20-25
    • /
    • 2000
  • The wastewater treatment for the purpose of water-recycling was performed using Fenton's & ozone's methods. These methods were used to increase the treatment efficiency of textile wastewater and to search for the optimal operating conditions. The optimal conditions by Fenton process were determined so that input amounts of $FeSO_4{\cdot}7H_2O$ and $H_2O_2$ were $7.2mM/{\;}{\ell}$ and $49.0m/{\;}{\ell}$ respectively, treatment by ozone process had 92% removal efficiency at ozone concentration of 9.73g/min and $130mM/{\;}{\ell}$ of $H_2O_2$.

  • PDF

A Study on the Modified Fenton Oxidation of MTBE in Groundwater with Permeable Reactive Barrier using Waste Zero-valent Iron (폐영가철 투수성반응벽체를 이용한 Modified Fenton 산화에 의한 MTBE 처리연구)

  • Moon, So-Young;Oh, Min-Ah;Lee, Jai-Young
    • Journal of Soil and Groundwater Environment
    • /
    • v.17 no.2
    • /
    • pp.15-21
    • /
    • 2012
  • MTBE (Methyl tertiary-butyl ether) has been commonly used as an octane enhancer to replace tetraethyl lead in gasoline, because MTBE increases the efficiency of combustion and decreases the emission of carbon monoxide. However, MTBE has been found in groundwater from the fuel spills and leaks in the UST (Underground Storage Tank). Fenton's oxidation, an advanced oxidation catalyzed with ferrous iron, is successful in removing MTBE in groundwater. However, Fenton's oxidation requires the continuous addition of dissolved $Fe^{2+}$. Zero-valent iron is available as a source of catalytic ferrous iron of MFO (Modified Fenton's Oxidation) and has been studied for use in PRBs (Permeable Reactive Barriers) as a reactive material. Therefore, this study investigated the condition of optimization in MFO-PRBs using waste zero-valent iron (ZVI) with the waste steel scrap to treat MTBE contaminated groundwater. Batch tests were examined to find optimal molar ratio of MTBE : $H_2O_2$ on extent to degradation of MTBE in groundwater at pH 7 with 10% waste ZVI. As the results, the ratio of optimization of MTBE to hydrogen peroxide for MFO was determined to be 1:300[mM]. The column experiment was conducted to know applicability of MFO-PRBs for MTBE remediation in groundwater. As the results of column test, MTBE was removed 87% of the initial concentration during 120days of operational period. Interestingly, MTBE was degraded not only within waste ZVI column but also within sand column. It means the aquifer may affect continuously the MTBE contaminated groundwater after throughout the waste ZVI barrier. The residual products showed acetone, TBF (Tert-butyl formate) and TBA (Tert-butyl acetate) during this test. The results of the present study showed that the recycled materials can be effectively used for not only a source of catalytic ferrous iron but also a reactive material of the MFO-PRBs to remove MTBE in groundwater.

A Study for Conservation for the Wooden Coffin - Artificial Deterioration Using Fenton's Reagent - (녹나무목관 보존처리에 관한 연구 - Fenton 산화를 이용한 생재의 인공열화 연구 -)

  • Yang, Suk-Ja;Yang, Seok-Jin;Jeong, Ah-Reum
    • 보존과학연구
    • /
    • s.30
    • /
    • pp.203-215
    • /
    • 2009
  • In the conservation treatment of wood remains, polymers, treatment methods, and treatment period can be varied, depending on the percentage of moisture content and species of trees. Thus, in order to apply the appropriate conservation treatment, a lot of information from the wood remains are required. Despite the information from the wood remains, testing a part of the wood remains is necessary to get information about the polymers. When the wooden coffin made of camphor trees was excavated, it was cracked in the section of radiation, and there were hairlines cracks. Therefore, without any conservation treatment, it is impossible to restore it. This experiment is for the conservation treatment of the wooden coffin excavated from Songhyun-dong tombs No 7, Changnyeong. For this experiment, I used camphor trees from Jejudo. The purpose of this experiment is to asses the possibility of preliminary testing materials before the conservation treatment on the wooden coffin. After the camphor trees from Jejudo are artificially aged by Fenton's reagent, they are As a result of oxidation by Fenton, the degree of oxidation is high in proportion to the amount of peroxide and iron sulfate. Among several samples, the sample 'na' made the most similar result to the wooden coffin from Songhyun-dong. If I use this condition to make the sample in polymer tests, it is very helpful to find the most suitable polymer for the conservation treatment of wooden coffin. After the same species of trees are oxidized by Fenton and they become the similar condition, we are able to find suitable methods of conservation treatment. The suitable methods reduce the demage of the remains and make us to get more information. Thus, we are able to carry out conservation treatment more exactly.

  • PDF