• Title/Summary/Keyword: Fenton's process

Search Result 35, Processing Time 0.029 seconds

Study of wastewater-treatment's efficiency using Bacillus subtilis: with an effect of ozonation (Bacillus subtilis를 이용한 폐수처리 효과연구: 오존의 영향을 중심으로)

  • 박영규
    • Journal of environmental and Sanitary engineering
    • /
    • v.17 no.4
    • /
    • pp.29-38
    • /
    • 2002
  • Advanced oxidation of wastewater was studied with a purpose to remove TOC and color by the ozone-assisted Fenton reaction. The optimal conditions were determined by hydrogen peroxide and ozone concentrations. Experimental results indicate that the ozone treatment after Fentons process was found to provide very efficient removal efficiency in the process, avoiding the exclusive ozone treatment. The combined process of ozone in the Fenton oxidation respectively was increased removal efficiences of 10.7% in comparison with exclusive Fenton oxidation. Also, the treatments of ozone after Fenton's oxidation respectively had increased the removal efficiences of 16.%. As a result, the treatment of ozone after Fentons oxidation had the best removal efficiency of approximately 96%. Removal efficiency of color was significantly increased as mush as 26% by the advanced Fenton's oxidation in comparison with exclusive Fenton's oxidation. The removal efficiencies in the biological treatment using Bacillus subtilis after Fenton's oxidation and after Fenton's and ozone's oxidation were increased by 14% and 19% respectively. Although these combined Bacillus subtilis-assisted Fenton's oxidation was determined to be effective method to treat the dyeing wastewater in an economic point of view, the choice of wastewater treatment can be varied depending on water quality.

A Study on the Dye-Wastewater Treatment by Fenton and Photo-Fenton Oxidation Process (Fenton 및 Photo-Fenton 산화공정을 이용한 염색 폐수의 처리에 관한 연구)

  • 조일형;고영림;이소진;이홍근;조경덕
    • Journal of Environmental Health Sciences
    • /
    • v.26 no.4
    • /
    • pp.29-37
    • /
    • 2000
  • Fenton’s oxidation process is one of the most commonly applied processes to the wastewater which cannot be treated by conventional biological treatment processes. However, it is necessary to minimize the cost of Fenton’s oxidation treatment by modifying the treatment processes or other means of chemical treatment. So, as a method for the chemical oxidation of biorefractory or nonbiodegradable organic pollutants, the Photo-Fenton-Reaction which utilizes iron(11)salt. $H_2O$$_2$ and UV-light simultaneously has been proprosed. Therfore, the purpose of this study is to test a removal efficiency of dye-wastewater and treatment cost with Fenton’s and Photo-Fenton’s oxidation process. The Fe(11)/$H_2O$$_2$ reagent is referred to as the fenton’s reagent. which produces hydroxy radicals by the interaction of Fe(11) with $H_2O$$_2$. In this exoeriment, the main results are as followed; 1. The Fenton oxidation was most efficient in the pH range of 3-5. The optimal condition for initial reaction pH was 3.5 for the high CO $D_{Cr}$ & TOC-removal efficiency. 2. The removal efficiency of TOC and CO $D_{Cr}$ increased up to the molar ration between ferrate and hydrogen peroxide 0.2:1, but above that ratio removal efficiency hardly increased. 3. The highest removal efficiency of TOC and CO $D_{Cr}$ were showed when the mole ration of ferrate to hydrogen peroxide was 0.2:3.4. 4. Without pretreatment process, photo-fenton oxidation which was not absorbed UV light was not different to fenton oxidation. 5. And Fenton oxidtion with pretreatment process was similar to Fenton oxidation in the absence of coagulation, the proper dosage of F $e^{2+}$: $H_2O$$_2$ was 0.2:1 for the optimal removal efficiency of TOC or CO $D_{Cr}$ .6. Also, TOC & CO $D_{Cr}$ removal efficiency in the photo-fenton oxidation with pretreatment was increased when UV light intensity enhanced.7. Optimum light intensity in the range from 0 to 1200 W/$m^2$ showed that UV-intensity with 1200W/$m^2$ was the optimum condition, when F $e_{2+}$:$H_2O$$_2$ ratio for the highest decomposition was 0.2:2.5.EX>$_2$ ratio for the highest decomposition was 0.2:2.5.

  • PDF

Fenton Process for Treatment of Contaminated Groundwater

  • Jung, Oh-Jin;Park, Chil-Nam
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.10 no.S_4
    • /
    • pp.165-172
    • /
    • 2001
  • We investigated the optimal experimental conditions and reaction kinetics for the decompositions of PCE, TCE, naphthalene, and chloroform using conventional Fenton oxidation process. Additionally, the influence of pH on the decompositions of PCE was also evaluated. The results indicated that the optimal pH value was around 3. The dosage of Fenton's reagent and the molar ratio of hydrogen peroxide to ferrous ion for an approximately complete decomposition was found to depend on the properties of the organic compound. Due to their unsaturated structures, the results show that PCE, TCE, and naphthalene could be all effectively decomposed by Fenton's reagent oxidation. Their unsaturated structures could be mostly destoyed within first 1-2 minutes at a low dosage with an certain molar ratio of hydrogen peroxide to ferrous ion. However the saturated compound such as chloroform was more difficult to decompose even with a relatively high dosage of Fenton's reagent.

  • PDF

EFFECTS OF REACTION TIME AND pH ON FENTON'S BATCH PROCESS FOR THE TREATMENT OF LEACHATE

  • Choi, Heung-Jin;Kim, Il-Kyu
    • Journal of Korean Society on Water Environment
    • /
    • v.18 no.2
    • /
    • pp.169-187
    • /
    • 2002
  • The effects of important parameters such as reaction time and pH on the Fenton's process were evaluated using a batch reactor. It was proven that organic materials and heavy metals in leachate could be successfully removed by Fenton's reagent. Favorable operation conditions were investigated. It was observed that the reaction between ferrous iron and hydrogen peroxide with the production of hydroxyl radical was almost complete in 10 minutes. That is, the oxidation of organic materials by Fenton's reagent was so fast that it was complete in 30 minutes with batch experiments. With the formation of carbonic acid, pH of the batch reactor decreased to favorable acidic conditions without acid addition. The oxidation of organic materials in the leachate showed a pH dependence and was most efficient in the pH range of 2-3.

Evaluation of effective process for oxidation and coagulation by ferrous ion and hydrogen peroxide

  • Moon, H.J.;Kim, Y.M.;Lee, S.H.
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2003.11b
    • /
    • pp.319-321
    • /
    • 2003
  • This research was carried out to evaluate the removal efficiencies of CODcr and colour for the dyeing wastewater by ferrous solution in Fenton process. The results showed that COD was mainly removed by Fenton coagulation, where the ferric ions are formed in the initial step of Fenton reaction. On the other hand colour was removed by Fenton oxidation rather than Fenton coagulation. The removal mechanism of CODcr and colour was mainly coagulation by ferrous ion, ferric ion and Fenton oxidation. The removal efficiencies were dependent on the ferric ion amount at the beginning of the reaction. However the final removal efficiency of COD and colour was in the order of Fenton oxidation, ferric ion coagulation and ferrous ion coagulation. The reason of the highest removal efficiency by Fenton oxidation can be explained by the chain reactions with ferrous solution, ferric ion and hydrogen peroxide.

  • PDF

A Study on the degradation of Lindane in water by a Photo-Fenton process and a UV/$H_2O_2$ process (Photo-Fenton 공정과 UV/$H_2O_2$ 공정을 이용한 Lindane의 분해특성 비교 연구)

  • Lee, Ju-Hyun;Choi, Hye-Min;Kim, Il-Kyu
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.1
    • /
    • pp.109-117
    • /
    • 2010
  • In the present study, the degradation characteristics of Lindane by Advanced Oxidation Processes(UV/$H_2O_2$, Photo-Fenton process) were studied. The degradation efficiency of Lindane in aqueous solution was investigated at various initial pH values, Fenton's reagent concentrations and initial concentrations of Lindane. GC-ECD was used to analyze lindane. Lindane has not been degraded without application of AOPs over two hours. But, approximately 5% of lindane was degraded with UV or $H_2O_2$ alone. Lindane with UV/$H_2O_2$ process showed approximately 7% higher removal efficiency than $H_2O_2$ process. In the UV/$H_2O_2$ process, the pH values did not affect the removal efficiency. The optimal mole ratio of $H_2O_2/Fe^{2+}$ for lindane degradation is about 1.0 in Photo-Fenton process. Also, the experimental results showed that lindane removal efficiency increased with the decrease of initial concentration of lindane. Under the same conditions, the order lindane of removal efficiency is as following : Photo-Fenton process > UV/$H_2O_2$ process > $H_2O_2$ process. In addition, intermediate products were identified by GC-MS techniques. Than PCCH(Pentachlorocyclohexene) was identified as a reaction intermediate of the Photo-Fenton process.

Treatment Study of Textile Wastewater by Fenton's Oxidation (펜톤 산화반응에 의한 염색폐수처리 연구)

  • 박영규
    • Journal of environmental and Sanitary engineering
    • /
    • v.15 no.4
    • /
    • pp.20-25
    • /
    • 2000
  • The wastewater treatment for the purpose of water-recycling was performed using Fenton's & ozone's methods. These methods were used to increase the treatment efficiency of textile wastewater and to search for the optimal operating conditions. The optimal conditions by Fenton process were determined so that input amounts of $FeSO_4{\cdot}7H_2O$ and $H_2O_2$ were $7.2mM/{\;}{\ell}$ and $49.0m/{\;}{\ell}$ respectively, treatment by ozone process had 92% removal efficiency at ozone concentration of 9.73g/min and $130mM/{\;}{\ell}$ of $H_2O_2$.

  • PDF

Treatment Efficiency of Complex Wastewater by Fenton's Oxidation Condition (펜톤산화에 따른 복합폐수의 처리효율연구)

  • Sung, Il-Wha
    • Journal of Environmental Health Sciences
    • /
    • v.32 no.5 s.92
    • /
    • pp.446-450
    • /
    • 2006
  • In order to treat the wastewater containing organic compound, pre-treatment system connected with MSP(molecular separation process) was investigated. With the aim of selecting an optimum process of Fenton's oxidation, removal efficiency of each process in the optimum reaction condition was recommended. The $Fe/H_{2}O_{2}$(ferric sulfate to hydrogen peroxide)reagent is referred to as the Fenton's regent, which produces hydroxyl radicals by the interaction of Fe with $H_{2}O_{2}$. The powerful oxidizing ability and extreme kinetic reactively of the hydroxyl radical was well established. Increasing dosage of $Fe/H_{2}O_{2}$ increased removal efficiency as molar ratio of $Fe/H_{2}O_{2}$ between 0.2 and 2.5. Optimum dosage of molar ratio was 1. The removal efficiency for reaction condition was increased as pH decreased when the molar ratio of $Fe/H_{2}O_{2}$ was 1.7. Fenton's oxidation was most efficient in the reaction time 35 min for complex wastewater. Also, coagulation aid experiments using kaolin resulted in 3% of kaolin dosage.

Evaluation of Effective Process Operation for the Texitile Dyeing Wastewater by Ferrous Solution and Hydrogen Peroxide

  • Lee, Sang Ho;Moon, Hey Jin
    • Journal of Environmental Science International
    • /
    • v.13 no.11
    • /
    • pp.987-991
    • /
    • 2004
  • The purpose of this research is to evaluate the removal efficiencies of COD$\_$Cr/ and color for the dyeing wastewater by the different dosages of ferrous solution and H$_2$O$_2$ in Fenton process. In the case of H$_2$O$_2$ divided dosage for the Fenton's reagent 7:3 of H$_2$O$_2$ was more effective than 3:7 to remove COD$\_$Cr/ and color. The results showed that COD$\_$Cr/ was mainly removed by Fenton coagulation, where the ferric ions are formed in the initial step of Fenton reaction. On the other hand color was removed by Fenton oxidation rather than Fenton coagulation. The removal mechanism of COD$\_$Cr/ and color was mainly coagulation by ferrous ion, ferric ion and Fenton oxidation. The removal efficiencies were dependent on the ferric ion amount at the beginning of the reaction. However, the final removal efficiency of COD$\_$Cr/ and color was in the order of Fenton oxidation, ferric ion coagulation and ferrous ion coagulation. The reason of the highest removal efficiency by Fenton oxidation can be explained by the chain reactions with ferrous solution, ferric ion and hydrogen peroxide.

A Role of Dissolved Iron ion in Combined Fenton Reaction for Treatment of TNT Contaminated Soil (오염토양처리를 위한 혼합 Fenton 공정에서 용존 철이온이 오염산화처리에 미치는 역할에 관한 연구)

  • Seo, Seung-Won;Kong, Sung-Ho
    • Journal of Soil and Groundwater Environment
    • /
    • v.11 no.6
    • /
    • pp.76-82
    • /
    • 2006
  • Fenton's reaction are difficult to apply in the field due to the low pH requirements for the reaction and the loss of reactivity caused by the precipitation of iron (II) at neutral pH. Moreover, Fenton-like reactions using iron mineral instead of injection of iron ion as a catalyst are operated to get high removal result at low pH. Because hydroxyl radical can generate at the surface of iron mineral, there are competition with a lot of hydroxide at around neutral pH. On the other side, to operate Fenton's reaction series at neutral pH, modified Fenton reaction is suggested. The complexes, composed by iron ions (ferrous ion or ferric ion)-chelating agent, could be acted as a catalyst and presented in the solution at neutral pH. However, modified Fenton reaction requires a lot of hydrogen peroxide. Accordingly, the purpose of this experiment was to effectively combine Fenton-like reaction and modified Fenton reaction for extending application of Fenton's reaction. i.e., injecting chelating agents in Fenton-like reaction at around neutral pH is increasing the concentration of dissolved iron ion and highly promoting the oxidation effect. 2,4,6-trinitrotoluene (TNT) was used as a probe compound for comparing reaction efficiencies in this study. If the concentration of dissolved iron ion in combined Fenton process were existed more than 0.1 mM, the total TNT removal were increased. Magnetite-NTA system showed the best TNT removal (76%) and Magnetite-EDTA system indicated about 56% of TNT removal. The results of these experiments proved more promoted 40-60% of TNT removal than Fenton-like reaction's.