• Title/Summary/Keyword: Fenhexamid

Search Result 10, Processing Time 0.032 seconds

Reduction Rate of Azoxystrobin, Fenhexamid and Cyprodinil during Ginseng Processing (홍삼 가공중 azoxystrobin, fenhexamid 및 cyprodinil농약의 감소율)

  • Im, Moo-Hyeog;Kwon, Kwang-Il;Park, Kun-Sang;Lee, Kyung-Jin;Chang, Moon-Ik;Yun, Won-Kap;Choi, Woo-Jong;Yoo, Kwang-Soo;Hong, Moo-Ki
    • Korean Journal of Food Science and Technology
    • /
    • v.39 no.5
    • /
    • pp.575-579
    • /
    • 2007
  • This study was performed to acquire scientific data for establishing the maximum residue limits (MRLs) of pesticides in Korean red ginseng and its extract. Pesticides (azoxystrobin, fenhexamid, cyprodinil) were applied to a cultivated field of ginseng, and the fresh ginseng was harvested and processed to make Korean red ginseng and its extract. The reduction rates of the residue pesticides were calculated by determining the pesticide contents in each stage of ginseng processing. The residue levels in fresh ginseng were 0.12 ppm for azoxystrobin, 0.19 ppm for fenhexamid, and 1.78 ppm for cyprodinil. The residue levels in Korean red ginseng were 0.24, 0.54, and 1.49 ppm, and in the extract 0.81, 1.93, and 3.66 ppm for azoxystrobin, fenhexamid, and cyprodinil, respectively. The steaming and processing of fresh ginseng increased azoxystrobin and fenhexamid residues, but cyprodinil was reduced. The reduction rates (dry basis) of azoxystrobin, fenhexamid, and cyprodinil were 0.66, 0.94, and 0.28 for Korean red ginseng, and 3.25, 4.94, and 1.01 for the extract, respectively.

Establishment of Analytical Method for Fenhexamid Residue in Korean Cabbage, Apple, Mandarin and Green Pepper (HPLC를 이용한 배추, 사과, 감귤, 고추 중 살균제 Fenhexamid의 정밀 분석법 확립)

  • Lee, Hye-Ri;Riu, Myoung-Joo;Park, Hee-Won;Na, Ye-Rim;Song, Hyuk-Hwan;Keum, Young-Soo;Zhu, Yongzhe;Kim, Jeong-Han
    • The Korean Journal of Pesticide Science
    • /
    • v.13 no.4
    • /
    • pp.223-231
    • /
    • 2009
  • This study was performed to develop a precise single residue analytical method of fungicide fenhexamid in representative crops for general residue analytical method which could be applied to most of crops. Korean cabbage, mandarin, apple and green pepper were selected, macerated, extracted with acetone, concentrated and partitioned with dichloromethane. Then the extracts were concentrated and cleaned-up through Florisil column with ethyl acetate/0.1% acetic acid in hexane [15:85, (v/v)] before concentration and analysis with HPLC. LOQ (Limit of Quantitation) of fenhexamid was 1 ng (S/N>10) and MQL (Method Quantitative Limit) was 0.01 mg/kg. Recoveries were measured at two fortification levels (10 MQL and 50 MQL) on crop samples and ranged from 85.2% to 94.8% (mean recoveries) and coefficients of variation were <10% regardless of sample type.

Study on Reduction Factors of Residual Pesticides in Processing of Ginseng(I) (인삼 가공 중 잔류농약의 감소계수연구 ( I ))

  • In, Moo-Hyeog;Kwon, Kwang-Il;Park, Kun-Sang;Choi, Dong-Mi;Chang, Moon-Ik;Jeong, Ji-Yoon;Lee, Kyung-Jin;Yun, Won-Kap;Hong, Moo-Ki;Woo, Gun-Jo
    • The Korean Journal of Pesticide Science
    • /
    • v.10 no.1
    • /
    • pp.22-27
    • /
    • 2006
  • The aim of this study was to establish the maximum residue limits(MRLs) of fenhexamid, azoxystrobin and cyprodinil pesticides in ginseng products. The pesticides were applied to the cultivation field of ginseng, and they were harvested and processed to make dried ginseng and ginseng extract. The reduction factors of residual pesticides were calculated by determination of the pesticides in each processing stage of ginseng. Reduction factor (dry basis) of pesticides (azoxystrobin, fenhexamid, cyprodinil) were 0.73, 0.96 and 0.24 for dried ginseng and 3.23, 5.74 and 1.20 for ginseng extract. All the residual pesticides were reduced by drying or processing of ginseng, however, fenhexamid did not.

Control Efficacy of Gray Mold on Strawberry Fruits by Timing of Chemical and Microbial Fungicide Applications (살균제와 미생물제 처리시기에 따른 딸기 잿빛곰팡이병 방제효과)

  • Nam, Myeong-Hyeon;Kim, Hyeon-Suk;Lee, Won-Keun;Gleason, Mark L.;Kim, Hong-Gi
    • Horticultural Science & Technology
    • /
    • v.29 no.2
    • /
    • pp.151-155
    • /
    • 2011
  • The fungus Botrytis cinerea causes fruit rot of strawberry and the damages can result in harvest losses upto 50%. Proper timing of fungicide application is essential for successful control of Botrytis fruit rot, fenhexamid plus iminoctadine tris, cyprodinil plus fludioxonil, fludioxonil alone, and Bacillus subtilis QST713 were applied to individual buds, flowers, and green and red fruit of cultivar 'Seolhyang' ex vivo. Cyprodinil plus fludioxonil or fludioxonil alone was applied i) before and after a 5-hr period of low-temperature ($0^{\circ}C$) incubation ex vivo ii) in field trials. Strawberry flowers and red fruit were more susceptible to B. cinerea than the green fruits. Incidence of Botrytis rot with fenhexamid plus iminoctadine tris and cyprodinil plus fludioxonil was the lowest at flowering, whereas B. subtilis QST713 did not significantly among treatments. In 2010, incidence of Botrytis fruit rot was significantly reduced when fludioxonil was applied two times at 1 week intervals from 50% bloom in field trials. Cultivars Redpearl and Seolhyang were more susceptible to low-temperature than cvs. Maehyang and Akihime. Cyprodinil plus fludioxonil application was effective when applied before onset of the low-temperature treatment period. Fludioxonil showed the most effective when it was sprayed one and more than two times in before and post low-temperature condition, respectively. These results demonstrate that fungicide selection and timing can interact with stage of fruit development and low-temperature in determining effectiveness of suppression of Botrytis fruit rot.

Gas Chromatographic Analysis on the Residual of Fungicide Fenhexamid in Crops(Cucumber, Strawberry and Grape) (작물(오이, 딸기, 포도) 중 살균제 Fenhexamid의 잔류성에 대한 기체 크로마토그래피 분석)

  • Han, Seong-Soo;Lo, Seog-Cho;Kim, Won-Ju;Park, PiII-Jae;Kim, Il-Kwang
    • Analytical Science and Technology
    • /
    • v.16 no.1
    • /
    • pp.70-77
    • /
    • 2003
  • The optimum conditions for the residue analysis of hydroxyanilide fungicide fenhexamid on cucumber, strawberry and grape were investigated by gas chromatography equipped with electron capture detector (GC-ECD) and the residual amount was determined by sprayed days before harvest. Each samples were extracted with acetone, filtered and concentrated to 50 mL. The concentrated extracts were transferred to dichloromethane and then thoroughly concentrated. The concentrated phase was loaded on the filtration column stuffed with silica gel and purified with acetone:hexane (5:95, 15:85, v/v) mixed solvent. The regression equation and linearity of the standard calibration curves between 0.05~2.00 ng were as follows : cucumber; Y=312.40X+10.26, $R^2=0.9996$, strawberry; Y=313.33X+5.54, $R^2=0.9998$, grape; Y=253.27X-2.23, $R^2=0.9994$. From the standard additional experiments with 0.10 mg/L and 0.40 mg/L, the average recoveries of cucumber, strawberry and grape were 94.8%, 88.1% and 93.7%, respectively and the detection limits were all the same as 0.01 mg/L. Residual amounts in crops were ranged from 0.01 to 0.58 mg/L.

Effect of Rosemary Essential Oil and Trichoderma koningiopsis T-403 VOCs on Pathogenic Fungi Responsible for Ginseng Root Rot Disease

  • Hussein, Khalid Abdallah;Lee, Young-Don;Joo, Jin Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.7
    • /
    • pp.1018-1026
    • /
    • 2020
  • Rosemary essential oil was evaluated for antifungal potentiality against six major ginseng pathogens: Sclerotinia sclerotiorum, Sclerotinia nivalis, Cylindrocarpon destructans, Alternaria panax, Botrytis cinerea, and Fusarium oxysporum. The in vitro fungicidal effects of two commonly used fungicides, namely mancozeb and fenhexamid, and the volatile organic compounds (VOCs) of Trichoderma koningiopsis T-403 on the mycelial growth were investigated. The results showed that rosemary essential oil is active against all of the pathogenic strains of ginseng root rot, whereas rosemary oil displayed high ability to inhibit the Sclerotinia spp. growth. The highest sensitivity was S. nivalis, with complete inhibition of growth at 0.1% v/v of rosemary oil, followed by Alternaria panax, which exhibited 100% inhibition at 0.3% v/v of the oil. Minimum inhibitory concentrations (MICs) of rosemary oil ranged from 0.1 % to 0.5 % (v/v). Chemical analysis using GC-MS showed the presence of thirty-two constituents within rosemary oil from R. officinals L. Camphore type is the most frequent sesquiterpene in rosemary oil composition. Mancozeb and fenhexamid showed their highest inhibition effect (45% and 30%, respectively) against A. panax. T. koningiopsis T-403 showed its highest inhibition effect (84%) against C. destructans isolate. This study may expedite the application of antifungal natural substances from rosemary and Trichoderma in the prevention and control of phytopathogenic strains in ginseng root infections.

Residue of Organophosphorus and Organochlorine Pesticides in Fresh Ginseng and Red Ginseng Extract (수삼과 홍삼농축액 중 유기인계와 유기염소계 농약의 잔류)

  • Kim, Jung-Ho
    • Korean Journal of Environmental Agriculture
    • /
    • v.26 no.4
    • /
    • pp.337-342
    • /
    • 2007
  • To obtain the data on the risk assessment of residue levels of organophosphorus and organochlorine pesticides in fresh ginseng and red ginseng extract, the residual pesticides in samples are surveyed with GC-NPD and GC-ECD for quantitative analysis and GC-MSD for qualitative analysis. The residual organophosphorus pesticides, such as diazinon, pyrimethanil, tolclofos-methyl, metalaxyl, diethofencarb, parathion, cyprodinil, tolylfluanid and kresoxim-methyl, are not detected in fresh ginseng from Punggi. The residual organophosphorus pesticides except tolclofos-methyl are not detected in fresh ginseng from Sangju. Average amount of tolclofos-methyl in fresh ginseng from Sangju are $0.054{\pm}0.008\;mg/kg$, representing $18{\pm}2%$ of MRL of 0.03 mg/kg on fresh ginseng in Korea. The residual organochlorine pesticides, such as BHC isomer, DDT isomer, aldrin, azoxystrobin, captan, cypermethrin, deltamethrin, dieldrin, difenoconazole, endosulfan-sulfate, endrin, fenhexamid, quintozene, ${\alpha}$-endosulfan and ${\beta}$-endosulfan, are not detected in fresh ginseng from Punggi and Sangju. The residual organophosphorus and organochlorine pesticides in red ginseng extract from Punggi and Sangju are not detected.

Selection of Environmental Friendly Organic Agricultural Materials for Controlling Ginseng Gray Mold (인삼 잿빛곰팡이병의 친환경방제를 위한 유기농업자재 선발)

  • Kim, Woo Sik;Kim, Jong Seong;Park, Jee Sung;Ahn, In;Park, Kyung Hoon;Kim, Ki Hong
    • Korean Journal of Medicinal Crop Science
    • /
    • v.23 no.6
    • /
    • pp.473-479
    • /
    • 2015
  • Background : To control ginseng gray mold, farmers have mainly used inorganic chemical based fungicides. The recent emergence of fungicide resistance has reduced the effectiveness of such control methods. Such pesticides also carry additional problems, such as diffuse pollution. Methods and Results : Six treatments of organic agricultural materials were tested for control of ginseng gray mold, CAPW (Chrysophanic acid + Phytoncide + Wood vinegar), EmEWV (Emodin + Ethanol + Wood vinegar), CEWV (Curcumin + Eugenol + Wood vinegar), Bacillus subtilis, soybean oil and sulfur. The control effect for gray mold by a single application of the agrochemical fungicide industrial Fenhexamid wettable powder (WP) was 84.4%. The control effect by CAPW, EmEWV and CEWV varied between 52.7 - 64.9%. The control effect by B. subtilis, soybean oil, and sulfur were 32.9 - 59.2%. Conclusions : In the field tests, CAPW showed the highest control effects when used before, and at first stage of disease incidence, against ginseng gray mold.

Multi-analysis of the Organochlorine Pesticides in Ginseng at Gyeongbuk, Korea (경북지역 인삼 중 유기염소계 농약의 다성분 분석)

  • Park Moon-Ki;Kim Jung-Ho
    • Journal of Environmental Science International
    • /
    • v.14 no.2
    • /
    • pp.193-199
    • /
    • 2005
  • To obtain the residual organochlorine pesticides in the ginseng, the methods of multi-analysis for BHC's isomer, DDT's isomer and other organochlorine pesticides by GC-ECD are surveyed. The relative retention time for $\alpha-BHC,\;\beta-BHC,\;\delta-BHC\;and\;\gamma-BHC$ is 1.000, 1.025, 1.034 and 1.056, respectively. The relative retention time for o,p-DDE, p,p-DDE, o,o-DDD, o,p-DDT, o,p-DDD, and p,p-DDT is 1.199, 1.230, 1.242, 1.286, 1.329 and 1.333, respectively. The BHC isomers, DDT's isomer and other organochlorine pesticides are separated with multianalysis condition. The qualified defection concentration for $\alpha-BHC$, Quintozene, Aldrin, Captan, $\alpha-Endosulfan$, and Dieldrin is 0.95ng/g, 0.27ng/g, 1.04ng/g, 0.63ng/g, 0.55ng/g and 0.62ng/g, respectively. The qualified defection concentration for Fenhexamid, Endrin, $\beta-Endosulfan$, o,p-DDT, Endosulfan-sulfate is 5.71ng/g, 0.61ng/g, 0.48ng/g, 0.44ng/g and 0.51ng/g, respectively. BHC, Aldrin, Dieldrin, Endrin and DDT, which were Korea Food & Drug Administration advisory pesticides, are not detected in soil environment. Also it's residual organochlorine pesticides are not polluted in the ginseng on Sangju Korea.

The control effect of some fungicides against cucumber sclerotinia rot and the sensitivity of sclerotinia isolates to fungicides (오이 균핵병에 대한 몇 가지 살균제의 방제 효과와 살균제에 대한 균핵병균의 감수성 정도 조사)

  • Kim, Myeong-Ok;Min, Ji-Young;Choi, Woo-Bong;Kang, Beum-Kwan;Park, Sung-Woo;Choi, Gyung-Ja;Park, Chang-Sik;Cho, Kwang-Yun;Kim, Heung-Tae
    • The Korean Journal of Pesticide Science
    • /
    • v.9 no.4
    • /
    • pp.429-436
    • /
    • 2005
  • As Sclerotinia sclerotiorum causing cucumber sclerotinia rot was the fastest in the mycelial growth at $25^{\circ}C$, its pathogenicity was strong at the same temperature among several temperatures. All the isolates of Sclerotinia sclerotiorum showed a strong pathogenicity against cucumber fruits, which was confirmed by a disk assay and a wound assay. A wound assay was superior to a disk assay to develop the assay system for assessing the fungicidal activity of several fungicides against Sclerotinia sclerotiorum. In a disk assay, it was very difficult to assess the fungicidal activity, because the pathogenicity of isolates used in the experiment was very strong. At 500 and $3.0{\mu}g/mL$, the activity of dichloflouanid and the mixture of carbendazim and diethofencarb against cucumber sclerotinia rot was 14.3 and 42.3%, respectively, by using a disk assay. However, at same concentration two fungicides showed the high controlling activity as 100 and 92.5%, through a wound assay in a laboratory. Also, the activity of two fungicides was good against cucumber sclerotinia rot in the greenhouse where cucumber plants were cultivated in the field, showing the control value as 91.1 and 82.9% at 100 and $825{\mu}g/mL$, respectively. All the isolates of Sclerotinia sclerotiorum from cucumber fruits sampled in the polyvinyl house were subjected to monitoring for the resistance to 7 fungicides. The $EC_{50}$ value of 7 fungicides was as follows: fenhexamid; $0.13{\mu}g/mL$, procymidon and iprodione; 0.18 and $0.24{\mu}g/mL$, carbendazim and the mixture of carbendazim and diethofencarb; 0.13과 $0.05{\mu}g/mL$, iminoctadine and dichlofluanid; 1.94 and $8.95{\mu}g/mL$. Ultimately it was not found that resistant isolates of Sclerotinia sclerotiorum were appeared in the field.