• Title/Summary/Keyword: Femtosecond Pulse Laser

Search Result 116, Processing Time 0.028 seconds

High-power SESAM Mode-locked Yb:KGW Laser with Different Group-velocity Dispersions

  • Park, Byeong-Jun;Song, Ji-Yeon;Lee, Seong-Yeon;Yee, Ki-Ju
    • Current Optics and Photonics
    • /
    • v.6 no.4
    • /
    • pp.407-412
    • /
    • 2022
  • We report on a diode-laser-pumped mode-locked Yb:KGW laser system, which delivers ultrashort pulses down to 89 fs at a repetition rate of 63 MHz, with an average power of up to 5.6 W. A fiber-coupled diode laser at 981 nm, operated with a compact driver, is used to optically pump the gain crystal via an off-axis parabolic mirror. A semiconductor saturable-absorber mirror is used to initiate the pulsed operation. Laser characteristics such as the pulse duration, spectrum bandwidth, and output power are investigated by varying the intracavity dispersions via changing the number of bounces between negative-dispersive mirrors within the cavity. Short pulses with a duration of 89 fs, a center wavelength of 1,027 nm, and 3.6 W of output power are produced at a group-velocity dispersion (GVD) of -3,300 fs2. As the negative GVD increases, the pulse duration lengthens but the output power at the single-pulse condition can be enhanced, reaching 5.6 W at a GVD of -6,600 fs2. Because of pulse broadening at high negative GVDs, the highest peak intensity is achievable at a moderate GVD with our system.

A novel method for calculation of dispersions in biaxial crystals for frequency conversion of short pulse lasers (극초단 펄스 레이저의 파장변환을 위한 이축 비선형 광학 결정에서 분산의 새로운 계산법)

  • Park Jae U;Yun Chun Seop
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2003.02a
    • /
    • pp.222-223
    • /
    • 2003
  • As laser pulse width becomes shortened from nanoseconds to femtoseconds, the effects caused by the dispersions of nonlinear optical mediums, such as group velocity mismatch and group velocity dispersion become considerably significant. The group velocity mismatch and group velocity dispersion are the major factors that lead to a decrease of frequency conversion efficiency and pulse spreading for picosecond and femtosecond pulses. (omitted)

  • PDF

The study of optimal reduced-graphene oxide line patterning by using femtosecond laser pulse (펨토초 레이저 펄스를 이용한 환원된 그래핀의 최소 선폭 패턴 구현에 관한 연구)

  • Jeong, Tae-In;Kim, Seung-Chul
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.7
    • /
    • pp.157-162
    • /
    • 2020
  • In recent years, laser induced graphene process have been intensively studied for eco-friendly electronic device such as flexible electronics or thin film based energy storage devices because of its simple and effective process. In order to increase the performance and efficiency of an electronic device using such a graphene patterned structure, it is essential to study an optimized laser patterning condition as small as possible linewidth while maintaining the graphene-specific 2-dimensional characteristics. In this study, we analyzed to find the optimal line pattern by using a Ti:sapphire femtosecond laser based photo-thermal reduction process. we tuned intensity and scanning speed of laser spot for generating effective graphene characteristic and minimum thermal effect. As a result, we demonstrated the reduced graphene pattern of 30㎛ in linewidth by using a focused laser beam of 18㎛ in diameter.

Design of a Femtosecond Ti:sapphire Laser for Generation and Temporal Optimization of 0.5-PW Laser Pulses at a 0.1-Hz Repetition Rate

  • Sung, Jae-Hee;Yu, Tae-Jun;Lee, Seong-Ku;Jeong, Tae-Moon;Choi, Il-Woo;Ko, Do-Kyeong;Lee, Jong-Min
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.1
    • /
    • pp.53-59
    • /
    • 2009
  • A chirped-pulse amplification Ti:sapphire laser system has been designed using a 10-Hz 100-TW Ti:sapphire laser to generate 0.1-Hz 0.5-PW laser pulses and optimize their temporal qualities such as temporal contrast and pulse duration. A high-energy booster amplifier to be added is expected to produce an energy above 30 J through the parasitic lasing suppression and the efficient amplification. To improve the temporal contrast of the laser pulses, a high-contrast 1-kHz amplifier system is used as a front-end. A grating stretcher which makes the laser pulse have 1-ns duration is used to prevent optical damages due to high pulse energy during amplification. A grating compressor has been designed with group delay analysis to obtain the recompressed pulse duration close to the transform-limited pulse duration. The final laser pulses are expected to have energy above 20 J and duration below 40 fs.

A Scheme to Control Laser Power and Exposure Time for Fabricating Precise Threedimensional Microstructures in Nano-stereolithography (nSL) Process (3 차원 나노 스테레오리소그래피의 정밀화를 위한 펨토초 레이저 출력-조사시간 제어방법)

  • 박상후;임태우;양동열
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1365-1368
    • /
    • 2004
  • A scheme to control the laser power and the exposure time was studied to fabricate precise microstructures using the nanostereolithography (nSL) process. Some recent works have shown that a three-dimensional (3D) microstructure can be fabricated by the photopolymerizing process which is induced by two-photon absorption (TPA) with a femtosecond pulse laser. TPA provides the ability to confine photochemical and physical reactions within the order of laser wavelength, so neardiffraction limit features can be produced. In the nSL process, voxels are continuously generated to form a layer and then another layer is stacked in the normal direction of a plane to construct a 3D structure. Thus, fabrication of a voxel with low aspect ratio and small diameter is one of the most important parameters for fabricating precise 3D microstructures. In this work, the mechanism of a voxel formation is studied and a scheme on the control of laser power and exposure for minimizing aspect ratio of a voxel is proposed.

  • PDF

Evanescent-field Q-switched Yb:YAG Channel Waveguide Lasers with Single- and Double-pass Pumping

  • Bae, Ji Eun;Choi, Sun Young;Krankel, Christian;Hasse, Kore;Rotermund, Fabian
    • Current Optics and Photonics
    • /
    • v.5 no.2
    • /
    • pp.180-185
    • /
    • 2021
  • A femtosecond-laser inscribed Yb:YAG surface channel waveguide (WG) laser with single-walled carbon nanotubes deposited on the top surface of the WG was passively Q-switched by evanescent field interaction. Q-switched operation of the 14-mm-long compact Yb:YAG WG laser was achieved near 1031 nm with two different pumping schemes (single- and double-pass pumping) with an output coupling transmission of 91%. The Q-switched pulse characteristics depending on the absorbed pump power were investigated for both pumping geometries and analyzed in detail based on theoretical modeling. The best performances (energy/pulse duration) for each configuration were 204.4 nJ/75 ns at a repetition rate of 1.87 MHz, and 201.1 nJ/81 ns at 1.75 MHz for single- and double-pass pumping, respectively.