• Title/Summary/Keyword: Femtocell networks

Search Result 62, Processing Time 0.132 seconds

Dynamic Downlink Resource Management of Femtocells Using Power Control in OFDMA Networks (OFDMA 펨토셀 환경에서 전력 제어를 이용한 동적 하향링크 자원관리 방법)

  • Lee, Sang-Tae;Ahn, Chun-Soo;Shin, Ji-Tae
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.5A
    • /
    • pp.339-347
    • /
    • 2012
  • Femtocells as home base station for indoor coverage extension and wideband data service, have been studied with significant interests. When femtocell is deployed, the existing cell structural of changes causes various technical problems. In this paper, we investigate the femto-macro cell interference mitigation in OFDMA system. We propose dynamic downlink resource management scheme which adjust the transmitted power of femtocell according to the strength of received macrocell signal and allocates subcarrier to femtocells in a dynamic manner. In this way, the interference between the macrocell users and femtocells is reduced. The simulation results show that proposed scheme enhances both macrocell and femtocell throughputs.

Service Block Based Resource Allocation Scheme for Macrocell-Femtocell Networks

  • Lee, Jong-Chan;Lee, Moon-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.6
    • /
    • pp.29-35
    • /
    • 2015
  • The heterogeneous LTE (Long Term Evolution)-Advanced networks comprising a macrocell and femtocells can provide an efficient solution not only to extend macrocell coverage but also to deal with packet traffics increasing explosively within macrocells. An efficient resource management scheme is necessary to maintain the QoS (Quality of Service) of mobile multimedia services because the LTE-Advanced system should support not only voice but also mobile applications such as data, image and video. This paper proposes a resource management scheme to guarantee QoS continuity of multimedia services and to maximize the resource utilization in OFDMA (Orthogonal Frequency Division Multiple Access) based LTE-Advanced systems. This scheme divides the resources into several service blocks and allocates those resources based on the competition between macrocell and femtocell. Simulation results show that it provides better performances than the conventional one in respect of handover failure rate and blocking rate.

Distributed Resource Allocation in Two-Hierarchy Networks

  • Liu, Shuhui;Chang, Yongyu;Wang, Guangde;Yang, Dacheng
    • ETRI Journal
    • /
    • v.34 no.2
    • /
    • pp.159-167
    • /
    • 2012
  • In this paper, a new distributed resource allocation algorithm is proposed to alleviate the cross-tier interference for orthogonal frequency division multiplexing access macrocell and femtocell overlay. Specifically, the resource allocation problem is modeled as a non-cooperative game. Based on game theory, we propose an iterative algorithm between subchannel and power allocation called distributed resource allocation which requires no coordination among the two-hierarchy networks. Finally, a macrocell link quality protection process is proposed to guarantee the macrocell UE's quality of service to avoid severe cross-tier interference from femtocells. Simulation results show that the proposed algorithm can achieve remarkable performance gains as compared to the pure waterfilling algorithm.

Discrete bacterial foraging optimization for resource allocation in macrocell-femtocell networks

  • Lalin, Heng;Mustika, I Wayan;Setiawan, Noor Akhmad
    • ETRI Journal
    • /
    • v.40 no.6
    • /
    • pp.726-735
    • /
    • 2018
  • Femtocells are good examples of the ultimate networking technology, offering enhanced indoor coverage and higher data rate. However, the dense deployment of femto base stations (FBSs) and the exploitation of subcarrier reuse between macrocell base stations and FBSs result in significant co-tier and cross-tier interference, thus degrading system performance. Therefore, appropriate resource allocations are required to mitigate the interference. This paper proposes a discrete bacterial foraging optimization (DBFO) algorithm to find the optimal resource allocation in two-tier networks. The simulation results showed that DBFO outperforms the random-resource allocation and discrete particle swarm optimization (DPSO) considering the small number of steps taken by particles and bacteria.

Femtocell Networks Interference Management Approaches

  • Alotaibi, Sultan
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.4
    • /
    • pp.329-339
    • /
    • 2022
  • Small cells, particularly femtocells, are regarded a promising solution for limited resources required to handle the increasing data demand. They usually boost wireless network capacity. While widespread usage of femtocells increases network gain, it also raises several challenges. Interference is one of such concerns. Interference management is also seen as a main obstacle in the adoption of two-tier networks. For example, placing femtocells in a traditional macrocell's geographic area. Interference comes in two forms: cross-tier and co-tier. There have been previous studies conducted on the topic of interference management. This study investigates the principle of categorization of interference management systems. Many methods exist in the literature to reduce or eliminate the impacts of co-tier, cross-tier, or a combination of the two forms of interference. Following are some of the ways provided to manage interference: FFR, Cognitive Femtocell and Cooperative Resource Scheduling, Beamforming Strategy, Transmission Power Control, and Clustering/Graph-Based. Approaches, which were proposed to solve the interference problem, had been presented for each category in this work.

Radio Resource Scheduling Approach For Femtocell Networks

  • Alotaibi, Sultan
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.4
    • /
    • pp.394-400
    • /
    • 2022
  • The radio resources available in a wireless network system are limited. Therefor, job of managing resources is not easy task. Because the resources are shared among the UEs that are connected, the process of assigning resources must be carefully controlled. The packet scheduler in an LTE network is in charge of allocating resources to the user equipment (UE). Femtocells networks are being considered as a promising solution for poor channel performance for mulitple environments. The implementation of femtocells into a macrocell (traditional base station) would boost the capacities of the cellular network. To increase femtocells network capacity, a reliable Packet Scheduler mechanism should be implemented. The Packet Scheduler technique is introduced in this paper to maximize capacity of the network while maintaining fairness among UEs. The proposed solution operates in a manner consistent with this principle. An analysis of the proposed scheme's performance is conducted using a computer simulation. The results reveal that it outperforms the well-known PF scheduler in terms of cell throughput and average throughput of UEs.

The study on effective PDV control for IEE1588 (초소형 기지국에서 타이밍 품질 향상을 위한 PDV 제어 방안)

  • Kim, Hyun-Soo;Shin, Jun-Hyo;Kim, Jung-Hun;Jeong, Seok-Jong
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2009.08a
    • /
    • pp.275-280
    • /
    • 2009
  • Femtocells are viewed as a promising option for mobile operators to improve coverage and provide high-data-rate services in a cost-effective manner Femtocells can be used to serve indoor users, resulting in a powerful solution for ubiquitous indoor and outdoor coverage. TThe frequency accuracy and phase alignment is necessary for ensuring the quality of service (QoS) forapplications such as voice, real-time video, wireless hand-off, and data over a converged access medium at the femtocell. But, the GPS has some problem to be used at the femtocell, because it is difficult to set-up, depends on the satellite condition, and very expensive. The IEEE 1588 specification provides a low-cost means for clock synchronisation over a broadband Internet connection. The Time of Packet (ToP) specified in IEEE 1588 is able to synchronize distributed clocks with an accuracy of less than one microsecond in packet networks. However, the timing synchronization over packet switched networks is a difficult task because packet networks introduce large and highly variable packet delays. This paper proposes an enhanced filter algorithm to reduce ths packet delay variation effects and maintain ToP slave clock synchronization performance. The results are presented to demonstrate in the intra-networks and show the improved performance case when the efficient ToP filter algorithm is applied.

  • PDF

Game Theoretic Approach for Joint Resource Allocation in Spectrum Sharing Femtocell Networks

  • Ahmad, Ishtiaq;Liu, Shang;Feng, Zhiyong;Zhang, Qixun;Zhang, Ping
    • Journal of Communications and Networks
    • /
    • v.16 no.6
    • /
    • pp.627-638
    • /
    • 2014
  • In this paper, we study the joint price and power allocation in spectrum sharing macro-femtocell networks. The proposed game theoretic framework is based on bi-level Stackelberg game where macro base station (MBS) works as a leader and underlaid femto base stations (FBSs) work as followers. MBS has fixed data rate and imposes interference price on FBSs for maintaining its data rate and earns revenue while FBSs jointly adjust their power for maximizing their data rates and utility functions. Since the interference from FBSs to macro user equipment is kept under a given threshold and FBSs compete against each other for power allocation, there is a need to determine a power allocation strategy which converges to Stackelberg equilibrium. We consider two cases for MBS power allocation, i.e., fixed and dynamic power. MBS can adjust its power in case of dynamic power allocation according to its minimum data rate requirement and number of FBSs willing to share the spectrum. For both cases we consider uniform and non-uniform pricing where MBS charges same price to all FBSs for uniform pricing and different price to each FBS for non-uniform pricing according to its induced interference. We obtain unique closed form solution for each case if the co-interference at FBSs is assumed fixed. And an iterative algorithm which converges rapidly is also proposed to take into account the effect of co-tier interference on interference price and power allocation strategy. The results are explained with numerical simulation examples which validate the effectiveness of our proposed solutions.

Clustering Strategy Based on Graph Method and Power Control for Frequency Resource Management in Femtocell and Macrocell Overlaid System

  • Li, Hongjia;Xu, Xiaodong;Hu, Dan;Tao, Xiaofeng;Zhang, Ping;Ci, Song;Tang, Hui
    • Journal of Communications and Networks
    • /
    • v.13 no.6
    • /
    • pp.664-677
    • /
    • 2011
  • In order to control interference and improve spectrum efficiency in the femtocell and macrocell overlaid system (FMOS), we propose a joint frequency bandwidth dynamic division, clustering and power control algorithm (JFCPA) for orthogonal-frequency-division-multiple access-based downlink FMOS. The overall system bandwidth is divided into three bands, and the macro-cellular coverage is divided into two areas according to the intensity of the interference from the macro base station to the femtocells, which are dynamically determined by using the JFCPA. A cluster is taken as the unit for frequency reuse among femtocells. We map the problem of clustering to the MAX k-CUT problem with the aim of eliminating the inter-femtocell collision interference, which is solved by a graph-based heuristic algorithm. Frequency bandwidth sharing or splitting between the femtocell tier and the macrocell tier is determined by a step-migration-algorithm-based power control. Simulations conducted to demonstrate the effectiveness of our proposed algorithm showed the frequency-reuse probability of the FMOS reuse band above 97.6% and at least 70% of the frequency bandwidth available for the macrocell tier, which means that the co-tier and the cross-tier interference were effectively controlled. Thus, high spectrum efficiency was achieved. The simulation results also clarified that the planning of frequency resource allocation in FMOS should take into account both the spatial density of femtocells and the interference suffered by them. Statistical results from our simulations also provide guidelines for actual FMOS planning.

Adaptive Frequency Resource Allocation For FFR Based Femtocell Network Environment (FFR 기반의 Femtocell 네트워크를 위한 적응 주파수 자원 할당 방법)

  • Bae, Won-Geon;Kim, Jeong-Gon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.7B
    • /
    • pp.505-516
    • /
    • 2012
  • According to distribute of resource of macro cell and reduce distance between transmitter and receiver, Femto cell system is promising to provide costeffective strategy for high data traffic and high spectral efficient services in future wireless cellular system environment. However, the co-channel operation with existing Macro networks occurs some severe interference between Macro and Femto cells. Hence, the interference cancellation or management schemes are imperative between Macro and Femto cells in order to avoid the decrease of total cell throughput. First, we briefly investigate the conventional resource allocation and interference cancellation scheme between Macro and Femto cells. So we found that cell throughput and frequency reuse ware decreased Then, we propose an adaptive resource allocation scheme based on the distribution of Femtocell traffic in order to increase the cell throughput and also maximize the spectral efficiency over the FFR (Fractional Frequency Reuse) based conventional resource allocation schemes. Simulation Results show that the proposed scheme attains a bit similar SINR (Signal to Interference Noise Ratio) distribution but achieves much higher total cell throughput performance distribution over the conventional resource allocation schemes for FFR and future IEEE 802.16m based Femtocell network environment.