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Femtocells are good examples of the ultimate networking technology, offering

enhanced indoor coverage and higher data rate. However, the dense deployment

of femto base stations (FBSs) and the exploitation of subcarrier reuse between

macrocell base stations and FBSs result in significant co‐tier and cross‐tier inter-
ference, thus degrading system performance. Therefore, appropriate resource allo-

cations are required to mitigate the interference. This paper proposes a discrete

bacterial foraging optimization (DBFO) algorithm to find the optimal resource

allocation in two‐tier networks. The simulation results showed that DBFO outper-

forms the random‐resource allocation and discrete particle swarm optimization

(DPSO) considering the small number of steps taken by particles and bacteria.
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1 | INTRODUCTION

In the last few decades, the demand for wireless communi-
cation has increased at an unprecedented pace. The devel-
opment of contemporary cellular technologies, such as
WiMAX (802.16e), Universal Mobile Telecommunication
Service (UMTS), and the promising Long‐Term Evolution
(LTE) has given users new ways of wirelessly communi-
cating with higher data rates [1]. Femtocells symbolize the
upcoming networking technology for indoor environments
as they can enhance the capacity and quality of service
(QoS) over a macrocell [1]. Furthermore, they offer superb
coverage for indoor femto user equipment (FUE) [2]. The
signal quality of a macrocell may be attenuated over long
distances, so the deployment of femtocells in densely popu-
lated areas is a significant advantage. Femtocells represent
a cost‐effective and energy‐effective cellular base station
that adopts frequency reuse, which enables the exploitation
of spectrum sharing in order to achieve higher bandwidth
[3]. The femtocell range is relatively small compared with
that of a macrocell; however, it offers a higher capacity in

dense and indoor environments. When femto base stations
(FBSs) are deployed inside the coverage area of a macro
base station (MBS), a two‐tier network (heterogeneous net-
work) is constructed. The home eNB was initiated in 2008
as an alternative depiction of a femtocell in the Third Gen-
eration Partnership Project (3GPP) LTE terminology [4].

The random deployment of femtocells is commonly
installed in the location, whereby macrocells have limited
access or unavailable coverage. By utilizing the frequency
reuse technique, femtocells and macrocells are able to use
the same frequency bands, resulting in the scarcity of avail-
able frequency spectrum along with an inefficient spectrum
allocation, inducing massive co‐tier and cross‐tier interfer-
ence [5,6]. The interference from femtocells and macrocells
reduces the desirable signal‐to‐interference‐plus‐noise‐ratio
(SINR), leading to a lower network capacity. While co‐tier
interference refers to the type of interference generated
between neighboring femtocells, cross‐tier interference rep-
resents interference caused by femtocell to macrocell trans-
mission, or vice versa. In orthogonal frequency‐division
multiple access (OFDMA) femtocell networks, there are two
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approaches to achieving channel frequency allocation: spec-
trum sharing and spectrum splitting [7]. The spectrum shar-
ing method allows macrocells and femtocells to occupy the
same resource blocks (subchannels), whereas spectrum split-
ting involves choosing a different part of the spectrum. In
two‐tier networks, the implementation of spectrum splitting
has gained increasing popularity compared to spectrum split-
ting [8]. There are three fundamental access modes in femto-
cell networks, namely closed, open, and hybrid access [9].
Closed access is required for home and office environments
because only a limited number of registered users have the
rights to gain access from the closed access FBS [10]. There-
fore, owing to restricted access to unregistered users, the
closed access mode offers a significant advantage to legiti-
mate users. On the contrary, in the open access mode, FUEs
may have access without any privileges because there is no
access constraint to a limited group of users. Meanwhile,
hybrid access is a combination of the aforementioned access
modes, but there are some obvious criteria that should be
considered. Both authorized and unauthorized FUEs can
access the FBSs without any restriction, but priority is
granted to registered users. A series of power‐control appli-
cations have been investigated to reduce the interference in
two‐tier networks. According to [11–13], the interference
between femtocells and macrocells can be mitigated by alter-
ing maximum power accordingly. Game theory has also been
proposed as a resource‐allocation scheme to reduce the inter-
ference [4,14]. In [14], game theory has been proposed to
optimize the SINR of macrocells and the energy efficiency
of femtocells, while providing finite interference. Aside from
the aforementioned methods, metaheuristic optimizations
have attracted much attention in many studies that focus on
mitigating the interference using efficient resource‐block
allocation [2,15–17]. In [2], full spectrum sharing was pro-
posed to maximize the throughput. To eliminate the interfer-
ence, the joint power and bandwidth allocation based on
genetic algorithms (GAs) was investigated [17]. In [18], the
authors introduced particle swarm optimization (PSO) to
address the resource‐allocation issue in a very dense area by
considering power adaptation. As a result, the system
throughput can be maximized. The proposed work in [18] is
capable of defining the most appropriate serving base station,
power, and bandwidth. Other metaheuristic optimizations,
such as the BAT algorithm and ant colony optimization
(ACO) have also been investigated to address the resource‐
allocation problem in femtocell networks. In [15], the
authors achieved an optimal resource allocation by using the
BAT algorithm to allocate the resource for each user. In addi-
tion, ACO was studied in [16] and [19] to maximize the sys-
tem performance and guarantee fairness among users. The
bacterial foraging algorithm (BFO) is regarded as an emerg-
ing metaheuristic optimization algorithm, and was developed
by Kevin M. Passino [20]. BFO was proposed to address

various problems such as optimal proportional‐integral‐deri-
vative (PID) control [21], resource scheduling in grid com-
puting [22], adaptive control [23], edge detection [24], and
constrained numerical optimization [25]. The previous works
show that BFO has excellent features that can solve complex
scenarios with a large number of small problems, such as
resource‐block allocation. Thus, BFO is promising for use in
the resource‐allocation problem to mitigate the interference
by employing the bacteria to search for the optimal resource‐
block allocation.

This paper focuses on the discrete problem of the
resource allocation in femtocell networks using discrete
bacterial foraging optimization (DBFO) as the optimization
technique. The application of DBFO is expected to signifi-
cantly mitigate both co‐tier and cross‐tier interference as
well as improve the throughput of the system because
many bacteria are deployed to search for the optimal
resource allocation. The resource allocation based on dis-
crete PSO was employed to compare the performance.

The rest of this paper is structured as follows. Section 2
discusses the system model and formulation. Section 3
illustrates the fundamental understanding of BFO and the
modified version of BFO. Section 4 presents the perfor-
mance evaluation of the proposed scheme, and Section 5
concludes the paper.

2 | SYSTEM MODEL AND PROBLEM
FORMULATION

2.1 | System model

In this network model, we deployed one macrocell site com-
prising three hexagonal sectors. Based on the 3GPP urban
deployment [26], femtocells are installed within apartments
under the coverage of macrocells. In this model, co‐tier and
cross‐tier interference are jointly considered owing to the
deployment of femtocells inside the coverage area of macro-
cell sites and the utilization of the frequency reuse technique.
In the system model, there are 25 single‐floor apartment
blocks deployed in a 5 × 5 grid model, where each grid rep-
resents an area of 5 × 5 m. In each sector of the macrocell,
macro user equipment (MUE) devices are arbitrarily and uni-
formly deployed, and these MUEs may be located indoors or
outdoors. pd and pa represent the FBS deployment probabil-
ity and activation probability, respectively. pd depicts the
possibility that an FBS exists in the building, and pa is
assumed to be always active (FBSs are always active).

2.2 | Problem formulation

The proposed DBFO algorithm is designed to seek the most
suitable resource‐block allocation for each FUE in order to
reduce the interference as random resource‐block assignment
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for FUE sometimes exhibits inferior performance. This paper
examines the resource‐allocation problem in FUE within the
coverage area of MBSs (Figure 1). This model conforms to a
frequency reuse method, and assumes a fair distribution of
transmit power for each subcarrier in the system; thus, the
transmit power is allocated equally among resource blocks.
Power allocation is not considered in this paper since the pri-
mary emphasis is on determining the suitable resource‐block
allocation in order to minimize co‐tier and cross‐tier interfer-
ence; this leads to a marked increase in the SINR. In this
study, SINR was chosen as the objective function to be opti-
mized. By considering co‐tier and cross‐tier interference, the
interference can be formulated as follows:

I ¼ ∑H�1
x¼0 ∑H�1

y¼0 ∑N
b¼1;u≠iG

B
ubp

r yð Þ
b
b δr xð Þ

u r yð Þ
b

� ��

þ∑L�1
z¼0 ∑M

m¼1;u≠1G
M
ump

r zð Þ
m
m δr xð Þ

u r zð Þ
m

� �i
;

(1)

where GB
ub represents the link gain of FUE u and FBS B,

which serves the FUE b. GM
um represents the link gain between

the FUE m and the MBS M that serves MUE m. p
r yð Þ
b
b denotes

the transmit power of FBS B in RB r yð Þ
b , and p

r zð Þ
b
b denotes the

MBS B transmit power in RB r zð Þ
m . δr xð Þ

u r zð Þ
m

is the interference
function that implies that ru and rm are the same. The terms
and condition of the interference can be applied as follows:

δrðxÞu rðzÞm
¼ 1 if rðxÞu ¼ rðzÞm

0 otherwise:

�
(2)

The SINR, which is chosen as the fitness value, is given
as:

SINR dBð Þ ¼ 10log10
G � Pt

IþN0 � B0

� �
(3)

where G · Pt refers to the favorable signal power, which is
the product of the power gain G and transmission power Pt.
N0 and B0 represent the noise density and channel band-
width, respectively.

From an analysis of the performance, we also consider
the calculation of Shannon's capacity so that we can
achieve the maximum theoretical data rate. Shannon's
capacity formula is given as:

C ¼ B0 � log2 1þ 10 log10
G � Pt

IþN0 � B0

� �� �
: (4)

2.3 | Fitness function

In this paper, SINR is selected as the fitness function used
in DBFO for the network performance evaluation, as
in (3). The fitness value is increasingly maximized as bac-
teria move through a search space to locate the optimal
environment. A bacterium represents a set of resource
blocks used by all FBSs in the network, so the appropriate
resource‐block allocation can be obtained as bacteria found
the best position as they forage through the search space.
The better the SINR, the higher will be the performance of
the femtocell network.

3 | DISCRETE BACTERIAL
FORAGING OPTIMIZATION
APPLICATION IN
RESOURCE‐ALLOCATION SCHEME

3.1 | Discrete bacterial foraging optimization
overview

As introduced by Passino in 2002 [27], BFO is a novel
modern search evolutionary algorithm that originated from
a biological process involving several types of bacteria
called Escherichia coli (E. coil), which is found in the
human intestine. E. coli is a typical sort of bacteria having
a tiny body length of about 2 μm and a diameter of 1 μm.
The foraging behavior of E. coli can be exploited as the
optimization model as the bacteria are inclined to traverse
the search space to locate nutrients, with the aim of maxi-
mizing their energy levels. Natural selection plays a key
role in this algorithm as the healthy bacteria (good for-
agers) are likely to survive and pass on their genetic com-
positions to the next‐generation bacteria, while the less
healthy bacteria (poor foragers) tend to be eliminated. For-
aging theory suggests that bacteria have to find the objec-
tive function considering that the amount of nutrients
consumed per unit time E=T can be increased. During the
search process, BFO contains three major mechanisms to
achieve the optimal energy: chemotaxis, reproduction, and
elimination‐dispersal events. It should be noted that bacte-
ria can obtain various solutions throughout the foraging
processes, and the results gradually improve either slightly
or significantly owing to the complexity of the problem
and parameter values of the BFO algorithm.

Desirable signal

MUE

MUE

FUE
FUE

FBS
FUE

FBSFUE

Co-tier interference
Cross-tier interference

FIGURE 1 Heterogeneous network
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3.1.1 | Chemotaxis

Nature has given researchers a basic understanding of how
to imitate the movement of tiny bacteria which swim and
tumble by rotating their flagella. The bacteria take a certain
amount of time to move by swimming in the same direc-
tion or tumbling to different directions from their previous
positions. These maneuvers permit the bacteria to traverse
through the entire search space in order to evade noxious
environments and find the most nutrient‐rich environment.
Let θi j; k; lð Þ denote the bacterium i‐th at j‐th chemotaxis,
k‐th and i‐th elimination dispersal. Thus, the foraging
behavior of bacterium can be represented as follows:

ϕ ið Þ¼ ΔðiÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ ið ÞTΔðiÞ

q ; (5)

θi jþ 1; k; lð Þ ¼ θi j; k; lð Þ þ
"
C ið Þ ΔðiÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Δ ið ÞTΔðiÞ
q

#
: (6)

In the expression above, ϕðiÞ indicates the foraging
direction vector and Δ(i) is limited to the interval ½�1; 1�.
C(i) refers to the length of the step size and θiðj; k; lÞ repre-
sents the current position of bacterium i. θiðjþ 1; k; lÞ is
the updated position after swimming or tumbling. If
θiðjþ 1; k; lÞ results in a value that is greater than the cur-
rent position θiðj; k; lÞ, the bacterium moves according to
the step size C(i) in the same direction until iteration Nc in
the chemotactic event reaches its limit; otherwise, the bac-
terium traverses in a different direction only if the cost of
θiðjþ 1; k; lÞ is smaller than that of θiðj; k; lÞ.

3.1.2 | Reproduction

In this algorithm, the reproduction event is implemented
after the chemotactic step to stimulate the evolutionary
rule. The reproduction is based on the fitness value that
is sorted from the smallest to the greatest value (ascend-
ing order). In the reproduction step, the bacteria that is
unable to yield an adequate amount of energy throughout
the foraging process would eventually die, while other
healthy bacteria would survive and split asexually into
two bacteria in the location previously occupied by their
parent bacteria. The accumulation of bacteria health
Jihealth of bacterium i‐th after the Nc chemotactic step can
be expressed as follows:

Jihealth ¼ ∑Nc
j¼0J

iðj; k; lÞ: (7)

Assume that Sr denotes half of the bacteria after the
ascending sort. S represents the bacteria population after
the ascending sort, so we can represent Sr as follows:

Sr ¼ S
2
: (8)

Sr of the less healthy bacteria would be eradicated from
the entire population, while Sr of the healthy bacteria is
split into two.

3.1.3 | Elimination‐dispersal
The elimination‐dispersal takes place, for example, owing
to the gradual increase in local temperature, leading to the
death of some bacteria in nutrient‐rich environments as
well as other factors that unpredictably disperse some bac-
teria from one place to another. The elimination‐dispersal
event severely influences the chemotaxis performance, but
it can disperse bacteria to the sought‐after region. To stim-
ulate this biological phenomenon, bacteria are randomly
eliminated according to the probability Ped.

The discrete value is required to depict the resource
block assignment in each FBS for FUE to be optimized by
DBFO. Unfortunately, BFO is primarily introduced to
address problems in the continuous domain so that it is
inconceivable to implement BFO for resource allocation in
femtocell networks without some modifications. The
chemotaxis contains an equation that is used to improve
the bacteria's position throughout the swimming and tum-
bling process. The key modification is to vary the updated
position of the bacteria θiðjþ 1; k; lÞ from the continuous
domain to the discrete domain so that the bacteria's posi-
tion in BFO will remain discrete throughout the foraging
process. The modification of the bacteria's position
θiðjþ 1; k; lÞ can be represented as:

θi jþ 1; k; lð Þ ¼ θi j; k; lð Þ þ round

"
C ið Þ ΔðiÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Δ ið ÞTΔðiÞ
q

#
: (9)

The algorithm of the DBFO can be formulated as fol-
lows:

[Step 1] Parameter initialization N;Nc;Ns;Nre;Ned;Ped, Ci and
ði ¼ 1; 2; 3; . . . ;NÞ
N: bacteria population,

Nc: chemotactic step,

Ns: swimming iteration,

Nre: reproduction step,

Ned: elimination‐dispersal step,

Ped: probability of elimination‐dispersion step,

Ci: step size produced during each movement of bacteria

[Step 2] Elimination‐dispersal loop: l ¼ lþ 1

[Step 3] Reproduction loop: k ¼ k þ 1

[Step 4] Chemotaxis loop: j = j + 1

(Continues)
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[a] For i ¼ 1; 2; 3; . . . ; S bacteria i go through chemotactic
step.

[b] Calculate fitness function J(j, k, l), then let
Jlast = Ji(j, k, l)

[c] Tumble: generate a random vector Δ ið Þ∈R and Δ ið Þ value
lies between the interval of [−1, 1].

[d] Move: let
θi jþ 1; k; lð Þ ¼ θi j; k; lð Þþ round C ið Þ ΔðiÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Δ ið ÞTΔðiÞ
p

� �

[e] Calculate fitness function:

Ji(j, k, l) with θi jþ 1; k; lð Þ
[f] Swim:

[i] Suppose m = 0 (counter for swimming length)

[ii] While m < Ns (prevent bacteria from swimming too
long in the search space)

• Suppose m ¼ mþ 1
• If J i; j; k; lð Þ> J last

then update the θi jþ 1; k; lð Þ with
equation [d] and J last¼Jiðj; k; lÞ. θi jþ 1; k; lð Þ
is used to calculate Ji(j, k, l), as seen in [e].

[iii] Else, let m = Ns

[g] If i ≠ S, then go to next bacteria

[Step 5] If j<Nc, calculate [step 4] and continue the chemotaxis
until there is no bacterium.

[Step 6] Reproduction:

[a] For: i = 0, 1, 2, …, S, let

Jihealth ¼ ∑
Nc

j¼0
Jiðj; k; lÞ

Jihealth represents the accumulation of nutrients over the
lifespan of bacterium i, and the ability to evade harmful or
poisonous environments. In the reproduction step, the cost
of Jihealth is sorted in ascending order, and Sr denotes half
of the cost of the bacteria. Sr bacteria with the lower cost
eventually die, and Sr bacteria with the higher cost remain
alive and asexually break up into two bacteria (duplicated
bacteria are placed in the same location as their hereditary
parents).

[Step 7] If k < Nre, go to [step 3].

[Step 8] Elimination‐dispersal step, For i ¼ 0; 1; 2; . . . ; S,
Ped is used as the probability to disperse.
If l < Ned, then go to [step 2]; otherwise end.

3.2 | Discrete particle‐swarm optimization
overview

For comparison, this study used the discrete particle‐swarm
optimization (DPSO) algorithm. PSO is a metaheuristic and
population‐based approach developed by Kennedy and
Eberhart [28] to explore the optimal global solution by
exploiting the communication performed by the particle
during the search. PSO is derived from swarm intelligence
(SI), with the socially biological characteristics such as

swarming and fish schooling [29]. In PSO, for instance,
individual particles such as birds may find the best possible
solution throughout the search, and the bird population
with the poor solution may use the intelligent communica-
tion with their neighboring particles and follow the path
taken by a bird with an optimal solution, even if they tra-
verse in opposite directions. By possessing this searching
trait, the candidate particles tend to gain more optimal solu-
tions throughout the search.

The population of the particle in PSO is dispersed, and
each individual particle is likely to traverse across the
search space and eventually accumulate in the location in
which an optimal solution exists. PSO employs two impor-
tant vectors, which define the particle position and velocity
of individual swarm s at iteration i. The update of the posi-
tion and velocity is based on the knowledge that a particle
gains from its neighbors. The velocity viþ1

s and position
xiþ1
s of a particle s at iteration i can be expressed as:

viþ1
s ¼ωvisþc1r1 plocali �xis


 �þc2r2ðpglobali �xisÞ; (10)

xiþ1
s ¼xisþvis; (11)

where ω represents the inertia weight that controls the
exploration capability of the particle population, and r1, r2
are the two random functions in the range between [0, 1].
c1 and c2 denote the parameters that influence the conver-
gence characteristics of PSO. These parameters are defined
empirically depending on the specific problem. plocali is the
best local position found by particle i, and pglobali is the best
global position found by all particle populations. A higher
ωvis generates a greater velocity viþ1

s , permitting particles to
explore the search space globally rather than locally. How-
ever, a lower ωvis produces a smaller velocity viþ1

s , allow-
ing bacteria to search more locally. c1r1ðplocali xisÞ and
c2r2ðpglobali xisÞ represent the cognitive knowledge and social
interaction between individual swarms, respectively.

3.3 | Bacteria position in resource‐allocation
model

Proper resource allocation is among the most significant
solutions as it can mitigate the interference in the femtocell
network. In this paper, both co‐tier and cross‐tier interfer-
ence are considered as an MBS is placed in the middle of
the network and FBSs are deployed around the MBS. The
problem mentioned above needs to be solved in the dis-
crete domain; however, the original BFO is designed to
deal with continuous problems. To address this problem,
we modified the original algorithm using the nearest‐inte-
ger method.

It is challenging to design a resource‐allocation scheme
for an individual bacterium to search for the most
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appropriate combination of resource blocks. In this model,
there are up to 50 RBs used by FUEs, and each FUE
selects 5 RBs. One bacterium represents all resource blocks
used in all FBSs; nevertheless, only one FBS is considered
in this scenario. F refers to the position of bacterium repre-
senting the resource blocks occupied by FUEs in the FBS.
The vector fu

!
represents the subset of resource blocks

occupied by FUEs, where u is the number of FUEs in the
FBS. rn,u symbolizes the individual resource block n that
belongs to FBS u, having an integer interval of
frbjrb ∈N; 0 ≤ rb ≤ 49g.

F ¼
f 1
!
f 2
!
..
.

f u
!

2
66664

3
77775 ¼

r1;1 r2;1 � � � rn;1
r1;2 r2;2 � � � rn;2
..
. ..

. ..
. ..

.

r1;u r2;u � � � rn;u

2
6664

3
7775:

The apparent representation of the resource blocks is
illustrated below, where one FBS serves five FUEs, and
five RBs are assigned to each user.

As shown in Figure 2, the representation illustrates that
FUE 1 occupies a subset of resource blocks f1

!
(1, 4, 5, 6,

2), and FUE 2 occupies a subset of resource blocks f2
!

(8,
9, 15, 23, 11).

4 | PERFORMANCE EVALUATION

4.1 | Simulation model

The performance of the proposed method was evaluated by
performing simulations using the following model. The net-
work environment consists of one MBS site, which is
deployed at the center of the network configuration. FBSs
are deployed inside apartment blocks within the MBS cov-
erage area, as depicted in Figure 3. The MBS coverage
area is divided into three sectorized areas. Two apartment
blocks are sited in each sector, and there are therefore six
apartment blocks in three sectors. MUEs are deployed ran-
domly within the MBS coverage area; meanwhile, FUEs
are only deployed inside the apartment blocks. The deploy-
ment of FBSs and FUEs in one apartment block is illus-
trated in more detail in Figure 4. One FBS has 50 RBs,
and 5 RBs are allocated to each corresponding FUE. The
proposed method aims to optimize the allocation of RBs to
each FUE so that the SINR and throughput can be

increased. Simulations of the resource allocation using
DPSO were also performed, and the performances are eval-
uated along with simulations using the proposed method.
Furthermore, the network parameters and values used in
this simulation are listed in Table 1. Parameters of DBFO
and DPSO are given in Tables 2 and 3, respectively.

4.2 | Simulation results

At the start of the simulation, the FBS randomly assigns
the subset of RBs to its associated FUEs. However, random
allocation does not provide an optimal solution for RB
allocation because some adjacent FUEs may obtain the
same RBs. As a result, the interference level increases and
the SINR decreases. The DBFO scheme aims to improve
the SINR by allocating the most appropriate RBs to each
FUE. Thus, interference can be reduced and the SINR can
converge to the higher value during DBFO iteration, as
shown in Figure 5. In this problem, the parameters setting
for DBFO can influence the convergence of SINR. For
example, the assignment of more bacteria helps to obtain
improved solutions at the cost of computation complexity.
Therefore, the parameters of DBFO should be adjusted
carefully.

If more bacteria are deployed, it is highly likely that
some bacteria may assume better positions at the starting

1 2 3 4 5

f1 1 4 5 6 2

f2 8 9 15 23 11

FIGURE 2 Representation of resource block used by FUEs
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FIGURE 3 Macrocell‐femtocell network environment
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FIGURE 4 Femtocell network in one apartment block
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point. A larger step size C allows bacteria to traverse with
the extensive step through search space, but each bacterium
may not pass through the optimal result. In contrast, a
smaller step size triggers slow convergence, but permits
bacteria to search more extensively near the optimal solu-
tion. Increasing the number of Nc and Nre may permit bac-
teria to find more optimal solutions and escape from
premature convergence. Employing a larger number of Ned

steps allows bacteria to avoid toxic environments as some
of the bacteria may be dispersed to different parts of the
search space, so that the bacteria can escape from the local
optimal solution.

In Figure 5, DBFO can converge to optimal solutions
by taking various steps when compared to the random‐
resource allocation as a new and improved resource‐block
allocation can be found. As shown in Figures 6 and 7, the
proposed DBFO can significantly mitigate interference
compared with the random‐resource allocation. In addition,
by using DBFO, the throughput of each FUE can be

TABLE 2 Discrete BFO parameters

Parameters Value

Bacteria population (S) 5

Chemotactic step (Nc) 5

Reproduction step (Nre) 5

Elimination‐dispersal (Ned) 15

Swim step (Ns) 5

Elimination‐dispersal probability (Ped) 0.25

Step size C 0.1

Search space boundary [0, 49]

TABLE 3 Discrete PSO parameters

Parameters Value

Population of particle (S) 5

Inertia weight (ωmin) 0.09

Inertia weight (ωmax) 0.04

Cognitive and social acceleration constants (C1) 0.01

Cognitive and social acceleration constants (C2) 0.01

Search space boundary [0, 49]
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FIGURE 5 SINR convergence analysis

TABLE 1 Femtocell environment parameters

Parameters Value

Cellular layout of
macrocell

Hexagonal grid, 1 cell site with 3
sectors

Macro path loss 128:1þ 37:6log10ðdm km½ �ÞdB
Femto path loss 127:7þ 30log10ðdf km½ �ÞdB
Number of UEs 5 MUEs/Sector, 2 FUEs/FBS

Number of apartment block 2 apartment/sector

RB bandwidth 180 kHz

System bandwidth 10 MHz

Shadowing standard
deviation

10 dB

Femto BS antenna Omnidirectional

FBS deployment
probability

0.8

Noise density −174 dBm/Hz

Antenna gain FBS, FUE 0 dBi, 0 dBi

Transmit power/RB 3 dBm

FBS activation probability 1

Wall penetration loss 20 dB

Antenna gain MBS, FBS 14 dBi, 0 dBi

Number of available RBs 50

RB allocated 5 RBs/UE

Macrocell/femtocell radius ISD = 500 m, 5 m

Cellular layout of femtocell 5 × 5 grid model
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FIGURE 6 Cumulative distribution function of throughput
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significantly enhanced, resulting in an improvement in the
system performance.

The simulation was extended by implementing DPSO
for resource‐block allocation in femtocell networks.

However, DPSO and DBFO are two different methods with
their own characteristics. Therefore, the simulation results
obtained using DPSO are presented as parallel solutions to
the resource‐block allocation problem. The cumulative dis-
tribution function (CDF) graphs of the SINR obtained from
1,000 simulation iterations using random allocation, DBFO,
and DPSO are presented in Figures 8 and 9 with 350 and
2,250 iterations, respectively. In the random allocation
method, only one‐time resource block allocation is per-
formed in one simulation, and thus there is no iteration
step. Meanwhile, in simulations that employ DBFO, one
iteration is equal to one loop of chemotaxis. In simulations
that employ DPSO, one iteration is equal to one position
update for all particles. Based on Figure 8, DBFO can
achieve a higher SINR than other methods in early itera-
tions. This indicates a faster convergence of DBFO than
DPSO in this resource‐allocation problem. However, this
faster convergence does not mean that the optimal solution
has been obtained, but it means that the algorithm can
reach a better solution early in the simulation (the 350‐th

SINR (dB)
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FIGURE 8 Cumulative distribution function of SINR after 350
iterations
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FIGURE 10 SINR performance comparison after 350 iterations
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iteration is considered as early point of the simulation).
Furthermore, if the iteration is extended, the convergence
characteristics could change depending on the network
topology. As can be seen in Figure 9, if the number of iter-
ations is extended to 2,250, DPSO can achieve an SINR
that is slightly higher than DBFO.

Figures 10 and 11 compare the SINR values obtained
for random allocation, DBFO, and DPSO, which confirm
the results obtained in Figures 8 and 9. In an optimization
problem with high complexity, such as resource‐block allo-
cation, it is not possible to guarantee that DBFO or DPSO
can reach the optimal solution because it depends on the
condition and topology of the networks, which are very
dynamic. However, it should be noted that DBFO can per-
form better in simulations with fewer iterations. This
scheme is preferable if the goal of the research is to obtain
a better solution in a shorter computation time.

5 | CONCLUSION

The proposed scheme uses the DBFO algorithm to
address the resource‐block allocation problem in macro-
cell‐femtocell networks. The primary goal of this paper
is to enable FUEs to select the optimal resource‐block
allocation while considering macrocells that coexist with
femtocell networks. The proposed algorithm could also
enhance the SINR and throughput while mitigating inter-
ference. The simulation results showed that DBFO out-
performs the random‐resource allocation in terms of
interference reduction as well as realizes an enhanced
SINR and throughput.
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