• Title/Summary/Keyword: Feedback Error Learning

Search Result 108, Processing Time 0.033 seconds

A Robust Nonlinear Control Using the Neural Network Model on System Uncertainty (시스템의 불확실성에 대한 신경망 모델을 통한 강인한 비선형 제어)

  • 이수영;정명진
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.5
    • /
    • pp.838-847
    • /
    • 1994
  • Although there is an analytical proof of modeling capability of the neural network, the convergency error in nonlinearity modeling is inevitable, since the steepest descent based practical larning algorithms do not guarantee the convergency of modeling error. Therefore, it is difficult to apply the neural network to control system in critical environments under an on-line learning scheme. Although the convergency of modeling error of a neural network is not guatranteed in the practical learning algorithms, the convergency, or boundedness of tracking error of the control system can be achieved if a proper feedback control law is combined with the neural network model to solve the problem of modeling error. In this paper, the neural network is introduced for compensating a system uncertainty to control a nonlinear dynamic system. And for suppressing inevitable modeling error of the neural network, an iterative neural network learning control algorithm is proposed as a virtual on-line realization of the Adaptive Variable Structure Controller. The efficiency of the proposed control scheme is verified from computer simulation on dynamics control of a 2 link robot manipulator.

  • PDF

A general dynamic iterative learning control scheme with high-gain feedback

  • Kuc, Tae-Yong;Nam, Kwanghee
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.1140-1145
    • /
    • 1989
  • A general dynamic iterative learning control scheme is proposed for a class of nonlinear systems. Relying on stabilizing high-gain feedback loop, it is possible to show the existence of Cauchy sequence of feedforward control input error with iteration numbers, which results in a uniform convergance of system state trajectory to the desired one.

  • PDF

The Effects of the Types of Web-based Corrective Feedback on the Learning Achievement (웹 기반 교정적 피드백 유형이 학업성취도에 미치는 영향)

  • Baek, Janghyeon;Jang, Sehee;Kim, Yungsik
    • The Journal of Korean Association of Computer Education
    • /
    • v.5 no.3
    • /
    • pp.59-67
    • /
    • 2002
  • In this study, we have designed and established a formative evaluation system which provides the web-based corrective feedback in the current situation that the importance of feedback as well as the formative evaluation is getting highlighted in the course of learning and instruction. This system is composed of three types of corrective feedback. The first one is the informations providing feedback by stage. It provides the explanations or the correct answers-related informations for the wrong answered questions by stage and directly. The second one is the error corrective feedback, which provides the informations about the reasons of the errors on each wrong answered question so that the learner can correct his errors. Lastly, the corrective feedback by the accumulated marks shows the learner's total marks and their wrong answered questions to enable the learner to learn for themselves. We analyzed how these three corrective feedback effects on the learning achievement after applying them to learners, and testified the type of the most effective corrective feedback in enhancing the degree of learning achievement.

  • PDF

Decision Feedback Algorithms using Recursive Estimation of Error Distribution Distance (오차분포거리의 반복적 계산에 의한 결정궤환 알고리듬)

  • Kim, Namyong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.5
    • /
    • pp.3434-3439
    • /
    • 2015
  • As a criterion of information theoretic learning, the Euclidean distance (ED) of two error probability distribution functions (minimum ED of error, MEDE) has been adopted in nonlinear (decision feedback, DF) supervised equalizer algorithms and has shown significantly improved performance in severe channel distortion and impulsive noise environments. However, the MEDE-DF algorithm has the problem of heavy computational complexity. In this paper, the recursive ED for MEDE-DF algorithm is derived first, and then the feed-forward and feedback section gradients for weight update are estimated recursively. To prove the effectiveness of the recursive gradient estimation for the MEDE-DF algorithm, the number of multiplications are compared and MSE performance in impulsive noise and underwater communication environments is compared through computer simulation. The ratio of the number of multiplications between the proposed DF and the conventional MEDE-DF algorithm is revealed to be $2(9N+4):2(3N^2+3N)$ for the sample size N with the same MSE learning performance in the impulsive noise and underwater channel environment.

Control of a Heavy Load Pointing System Using Neural Networks (신경회로망을 이용한 대부하 표적지향 시스템 제어)

  • 김병운;강이석
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.5
    • /
    • pp.55-63
    • /
    • 2004
  • This paper presents neural network based controller using the feedback error loaming technique for a heavy load pointing system. Also the mathematical model was developed to analyze heavy load pointing system. The control scheme consists of a feedforward neural network controller and a fixed-gain feedback controller. This neural network controller is trained so as to make the output of the feedback controller zero. The proposed controller is compared with the conventional PI controller through simulations, and the results show that the pointing accuracy of the proposed control system are improved against the disturbance induced by vehicle running on the bump course.

Learning Generative Models with the Up-Propagation Algorithm (생성모형의 학습을 위한 상향전파알고리듬)

  • ;H. Sebastian Seung
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1998.10c
    • /
    • pp.327-329
    • /
    • 1998
  • Up-Propagation is an algorithm for inverting and learning neural network generative models. Sensory input is processed by inverting a model that generates patterns from hidden variables using top-down connections. The inversion process is iterative, utilizing a negative feedback loop that depends on an error signal propagated by bottom-up connections. The error signal is also used to learn the generative model from examples. the algorithm is benchmarked against principal component analysis in experiments on images of handwritten digits.

  • PDF

Relationships Among the Big Five Personality Traits, Psychological Well-being, and College Adaptation of Pre-service Teachers (교육대학교 학생의 성격 5요인에 기초한 잠재적 성격 특성 유형과 심리적 안녕감, 대학생활적응 간의 관계)

  • Lee, Myung-Sook;Choi, Hyo-Sik;Yeon, Eun-Mo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.3
    • /
    • pp.71-81
    • /
    • 2019
  • To extend the potential benefits of error, the current study examined factors that affect students' error perception in the classroom. An experimental design was used to measure relations of classroom goal structure, feedback, and social relationships on students' perception of error. A total of 316 fourth-, fifth-, and sixth-grade elementary students participated as part of their regular class curriculum. Self-reported questionnaires were administered to measure students' perception of errors and relationships with teacher and peers, and then students were manipulated by classroom goal structure and feedback. Multiple regression analysis results suggested that students' perception of learning from error was affected mostly by relationships with peers, followed by relationships with teacher and the type of feedback. Students' perception of risk taking for error was also affected by relationships with peers and teacher, followed by the classroom goal structure. However, classroom goal structure and feedback did not affect their perception of thinking about error to improve their learning as well as error strain. These results imply how the classroom climate should be structured to improve perception of errors to improve student's learning.

Neural Network Based Disturbance Canceler with Feedback Error Learning for Nonholonomic Mobile Robots

  • Izumi, Kiyotaka;Syam, Rafiuddin;Watanabe, Keigo;Kiguchi, Kazuo
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.443-446
    • /
    • 2003
  • Conventional disturbance rejection methods have to derive the inverse model of a system. However, the inverse model of n nonholonomic system is not unique, because an inverse it changes depending on initial conditions and desired values. A kind of internal model control (IMC) using feedback error learning is discussed for the motion control of nonholonomic mobile robots in this paper, The present method is different from a conventional IMC whose control system consists of an inverse model, a direct model and a filter. The present disturbance rejection method need not use a direct model, where the remaining two elements are composed of the same inverse model based on neural networks.

  • PDF

Modeling of a 5-Bar Linkage Robot Manipulator with Joint Flexibility Using Neural Network (신경 회로망을 이용한 유연한 축을 갖는 5절 링크 로봇 메니퓰레이터의 모델링)

  • 이성범;김상우;오세영;이상훈
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.431-431
    • /
    • 2000
  • The modeling of 5-bar linkage robot manipulator dynamics by means of a mathematical and neural architecture is presented. Such a model is applicable to the design of a feedforward controller or adjustment of controller parameters. The inverse model consists of two parts: a mathematical part and a compensation part. In the mathematical part, the subsystems of a 5-bar linkage robot manipulator are constructed by applying Kawato's Feedback-Error-Learning method, and trained by given training data. In the compensation part, MLP backpropagation algorithm is used to compensate the unmodeled dynamics. The forward model is realized from the inverse model using the inverse of inertia matrix and the compensation torque is decoupled in the input torque of the forward model. This scheme can use tile mathematical knowledge of the robot manipulator and analogize the robot characteristics. It is shown that the model is reasonable to be used for design and initial gain tuning of a controller.

  • PDF

Position Control of Linear Synchronous Motor by Dual Learning (이중 학습에 의한 선형동기모터의 위치제어)

  • Park, Jung-Il;Suh, Sung-Ho;Ulugbek, Umirov
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.1
    • /
    • pp.79-86
    • /
    • 2012
  • This paper proposes PID and RIC (Robust Internal-loop Compensator) based motion controller using dual learning algorithm for position control of linear synchronous motor respectively. Its gains are auto-tuned by using two learning algorithms, reinforcement learning and neural network. The feedback controller gains are tuned by reinforcement learning, and then the feedforward controller gains are tuned by neural network. Experiments prove the validity of dual learning algorithm. The RIC controller has better performance than does the PID-feedforward controller in reducing tracking error and disturbance rejection. Neural network shows its ability to decrease tracking error and to reject disturbance in the stop range of the target position and home.