The Back propagation algorithm is a very effective supervised training method for multi-layer feed forward neural networks. This paper studies the decision boundary formation based on the Back propagation algorithm. The discriminating powers of several neural network topology are also investigated against five manually created data sets. It is found that neural networks with multiple hidden layer perform better than single hidden layer.
In this paper, genetic algorithm (GA) is the technique to search for the optimal structures (i,e., the kind of neural network, the number of hidden neuron, ..) of the neural networks which are used approximating a given nonlinear function, In this paper, we used multi layer feed-forward neural network. The decision method of synapse weights of each neuron in each generation used back-propagation method. In this study, we simulated nonlinear function approximation in the temperature control system.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
1998.03a
/
pp.49-52
/
1998
Neural Network has good performance in pattern classification, control and many other fields by learning ability. However, there is effective rule or systematic approach to determine optimal structure. In this paper, we propose a new method to find optimal structure of feed-forward multi-layer neural network as a kind of pruning method. That eliminating redundant elements of neural network. To find redundant elements we analysis error and weight changing with Rough Set Theory, in condition of executing back-propagation leaning algorithm.
신경회로망 구조의 정제(精製)는 회로망의 일반화능력이나 효율성의 관점에서 중요한 문제이다. 본 논문에서는 feed-forward neural networks로부터 은닉지식을 추출하는 방법을 사용하여 네트워크 재구성을 통한 정제방법을 제안한다. 먼저, 효율적인 if-then rule 추출방법을 제시하고 그 추출된 룰들을 사용하여 룰기반 네트워크로 변환하는 과정을 보여준다. 생성된 룰기반 네트워크 fully connected network에 비하여 상당히 축소된 연결 복잡도를 가지게 되며 일반적으로 더 우수한 일반화능력을 가지게 된다. 본 연구는 도메인 지식이 없이 데이타만 사용하여 어떻게 정제된 룰기반 신경망회로를 생성하고 있는가를 보여준다. 도메인 데이타들에 대한 실험결과도 제시하였다.
The Transactions of the Korea Information Processing Society
/
v.4
no.7
/
pp.1749-1758
/
1997
This paper suggests the development of dynamic forecasting model for short-term power demand based on Radial Basis Function Network and Pal's GLVQ algorithm. Radial Basis Function methods are often compared with the backpropagation training, feed-forward network, which is the most widely used neural network paradigm. The Radial Basis Function Network is a single hidden layer feed-forward neural network. Each node of the hidden layer has a parameter vector called center. This center is determined by clustering algorithm. Theatments of classical approached to clustering methods include theories by Hartigan(K-means algorithm), Kohonen(Self Organized Feature Maps %3A SOFM and Learning Vector Quantization %3A LVQ model), Carpenter and Grossberg(ART-2 model). In this model, the first approach organizes the load pattern into two clusters by Pal's GLVQ clustering algorithm. The reason of using GLVQ algorithm in this model is that GLVQ algorithm can classify the patterns better than other algorithms. And the second approach forecasts hourly load patterns by radial basis function network which has been constructed two hidden nodes. These nodes are determined from the cluster centers of the GLVQ in first step. This model was applied to forecast the hourly loads on Mar. $4^{th},\;Jun.\;4^{th},\;Jul.\;4^{th},\;Sep.\;4^{th},\;Nov.\;4^{th},$ 1995, after having trained the data for the days from Mar. $1^{th}\;to\;3^{th},\;from\;Jun.\;1^{th}\;to\;3^{th},\;from\;Jul.\;1^{th}\;to\;3^{th},\;from\;Sep.\;1^{th}\;to\;3^{th},\;and\;from\;Nov.\;1^{th}\;to\;3^{th},$ 1995, respectively. In the experiments, the average absolute errors of one-hour ahead forecasts on utility actual data are shown to be 1.3795%.
International Journal of Internet, Broadcasting and Communication
/
v.6
no.1
/
pp.9-12
/
2014
We present a mathematical method for calculation of transmission zero locations, determining a filtering characteristics of two-port systems. By adjusting element values based on the zero locations, the frequency-selectivity is characterized. The characteristic polynomial of ladder networks in externally-loaded feed-forward systems is considered by adopting chain matrices for subsystems. This method can be extended to other types of lumped systems with cross-coupled sections. We find out the zeros by solving characteristics polynomials of closed-form expressions in terms of Laplace impedances of elements. The pairs of complex zeros are shown to be solely from the cross-coupled portion of the system.
Anusha Bamini A M;Chitra R;Saurabh Agarwal;Hyunsung Kim;Punitha Stephan;Thompson Stephan
KSII Transactions on Internet and Information Systems (TIIS)
/
v.18
no.1
/
pp.46-63
/
2024
One of the biggest dangers in the globe is water contamination. Water is a necessity for human survival. In most cities, the digging of borewells is restricted. In some cities, the borewell is allowed for only drinking water. Hence, the scarcity of drinking water is a vital issue for industries and villas. Most of the water sources in and around the cities are also polluted, and it will cause significant health issues. Real-time quality observation is necessary to guarantee a secure supply of drinking water. We offer a model of a low-cost system of monitoring real-time water quality using IoT to address this issue. The potential for supporting the real world has expanded with the introduction of IoT and other sensors. Multiple sensors make up the suggested system, which is utilized to identify the physical and chemical features of the water. Various sensors can measure the parameters such as temperature, pH, and turbidity. The core controller can process the values measured by sensors. An Arduino model is implemented in the core controller. The sensor data is forwarded to the cloud database using a WI-FI setup. The observed data will be transferred and stored in a cloud-based database for further processing. It wasn't easy to analyze the water quality every time. Hence, an Optimized Neural Network-based automation system identifies water quality from remote locations. The performance of the feed-forward neural network classifier is further enhanced with a hybrid GA- PSO algorithm. The optimized neural network outperforms water quality prediction applications and yields 91% accuracy. The accuracy of the developed model is increased by 20% because of optimizing network parameters compared to the traditional feed-forward neural network. Significant improvement in precision and recall is also evidenced in the proposed work.
Proceedings of the Korean Society of Precision Engineering Conference
/
2002.05a
/
pp.73-77
/
2002
The requirements for higher productivity call for high speed of the machine tool axes. Iron core type linear DC motor is growly accepted far a viable candidate of the high speed machine tool feed unit. LDM, however, has inherent disturbance force components: cogging and force ripple. These disturbance force directly affects tracking accuracy of the carrage and must be eliminated or reduced. Reducing motor ripple, this paper adapted the feed forward compensation method and neural network control. Experiments carried 7ut on the linear motor test setup show that this control methods is usable in order to reduce the motor ripple.
Balayar Chakra B.;Kwon Ki-Hyeon;Kim Sang-Choon;Byun Hyung-Gi;Kim Nam-Yong
Annual Conference of KIPS
/
2006.05a
/
pp.1223-1226
/
2006
P2P(Peer to Peer) 기술은 1990년대 후반기부터 산업계 및 학계에 주목을 받고 있는 기술 분야중의 하나로 이 기술의 장점은 인터넷 환경에 산재하여 있는 컴퓨팅 파워, 공간, 네트워크 대역을 인터넷 기반으로 효과적으로 활용하여 협력작업을 가능하게 한다는데 있다. 최근에는 모바일 환경 응용을 위한 P2P 디바이스 탐색 분야에 관심사가 증대되고 있으며, P2P 시스템은 중앙통제 장치가 결여 되어 있기 때문에 중앙통제 장치 개입을 최소로 하면서 P2P를 운영하기 위한 효율적인 기법 및 체계가 요구되고 있다. 본 논문에서는 기존의 접근방법을 검토하여 FFNN(feed forward neural network)을 이용한 디바이스 탐색 기법을 제시한다. 제시한 FFNN은 BP(back propagation) 알고리즘을 통해 훈련하고 디바이스를 탐색한다. 제시한 시스템의 성능을 보이기 위해 일정한 계산량을 가지는 작업을 에이전트를 활용, 탐색된 디바이스간에 분배하여 처리한다. 본 논문에서는 제한된 자원을 가지는 디바이스 간에 P2P를 사용하는 기법에 대해 제시하였다.
Nowadays, due to various pollution sources, it is essential for environmental scientists to monitor water quality. Phytoplanktons form the end of the food chain in water bodies and are one of the most important biological indicators in water pollution studies. Chlorophyll-A, a green pigment, is found in all phytoplankton. Chlorophyll-A concentration indicates phytoplankton biomass directly. Therefore, Chlorophyll-A is an indirect indicator of pollutants, including phosphorus and nitrogen, and their refinement and control are important. The present study, Moderate Resolution Imaging Spectroradiometer (MODIS) satellite images were used to estimate the chlorophyll-A concentration in southern coastal waters in the Caspian Sea. For this purpose, Multi-layer perceptron neural networks (NNs) were applied which contained three and four feed-forward layers. The best three-layer NN has 15 neurons in its hidden layer and the best four-layer one has 5 in each. The three- and four- layer networks both resulted in similar root mean square errors (RMSE), 0.1($\frac{{\mu}g}{l}$), however, the four-layer NNs proved superior in terms of R2 and also required less training data. Accordingly, a four-layer feed-forward NN with 5 neurons in each hidden layer, is the best network structure for estimating Chlorophyll-A concentration in the southern coastal waters of the Caspian Sea.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.