• Title/Summary/Keyword: Feed-forward controller

Search Result 128, Processing Time 0.027 seconds

Dynamic Characteristics Control of a Step-down Chopper Using Load current Feed-forward Compensator (부하전류 전향보상기를 이용한 강압쵸퍼의 동특성 제어)

  • Chung, Chun-Byung;Chun, Ji-Yong;Jeon, Kee-Young;Han, Kyung-Hee
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.66-69
    • /
    • 2008
  • In this paper, The author present a load current feed-forward compensator by method that improve voltage controller of Step-down Chopper to get stable output voltage to sudden change of load current. To confirm the characteristicsof a presented load current feed -forward compensator compared each transfer function of whole system that load current feed-forward compensator is added with transfer function of whole system that existent voltage controller is included using Mason gains formula in Root locus and Bode diagram. As a result the pole of system is improved, extreme point of the wave and system improves, and size of peak value and phase margin of break frequency in resonance frequency confirmed that is good. Therefore, presented control technique could confirm that reduce influence by perturbation and improves stationary state and dynamic characteristics in output of Step-down Chopper.

  • PDF

A Study on the Neuro-Fuzzy Control and Its Application

  • So, Myung-Ok;Yoo, Heui-Han;Jin, Sun-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.2
    • /
    • pp.228-236
    • /
    • 2004
  • In this paper. we present a neuro-fuzzy controller which unifies both fuzzy logic and multi-layered feed forward neural networks. Fuzzy logic provides a means for converting linguistic control knowledge into control actions. On the other hand. feed forward neural networks provide salient features. such as learning and parallelism. In the proposed neuro-fuzzy controller. the parameters of membership functions in the antecedent part of fuzzy inference rules are identified by using the error back propagation algorithm as a learning rule. while the coefficients of the linear combination of input variables in the consequent part are determined by using the least square estimation method. Finally. the effectiveness of the proposed controller is verified through computer simulation for an inverted pole system.

Implementation of Fuzzy Self-Tuning PID and Feed-Forward Design for High-Performance Motion Control System

  • Thinh, Ngo Ha Quang;Kim, Won-Ho
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.14 no.2
    • /
    • pp.136-144
    • /
    • 2014
  • The existing conventional motion controller does not perform well in the presence of nonlinear properties, uncertain factors, and servo lag phenomena of industrial actuators. Hence, a feasible and effective fuzzy self-tuning proportional integral derivative (PID) and feed-forward control scheme is introduced to overcome these problems. In this design, a fuzzy tuner is used to tune the PID parameters resulting in the rejection of the disturbance, which achieves better performance. Then, both velocity and acceleration feed-forward units are added to considerably reduce the tracking error due to servo lag. To verify the capability and effectiveness of the proposed control scheme, the hardware configuration includes digital signal processing (DSP) which plays the main role, dual-port RAM (DPRAM) to guarantee rapid and reliable communication with the host, field-programmable gate array (FPGA) to handle the task of the address decoder and receive the feed-back encoder signal, and several peripheral logic circuits. The results from the experiments show that the proposed motion controller has a smooth profile, with high tracking precision and real-time performance, which are applicable in various manufacturing fields.

Design of Active Magnetic Bearing System for Moving Vehicles (이동 차량 탑재용 전자기 베어링 시스템 설계)

  • Kim, Ha-Yong;Sim, Hyun-Sik;Lee, Chong-Won;Kang, Tae-Ha
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.3 s.96
    • /
    • pp.364-370
    • /
    • 2005
  • The active magnetic bearing (AMB) systems mounted in moving vehicles are exposed to the disturbances due to the base motion, often leading to malfunction or damage as well as inaccurate positioning of the systems. Thus, in the controller design of such AMB systems, robustness to base disturbances becomes an essential requirement. In this study, effective control schemes are proposed for the homo-polar AMB system, which uses permanent magnets for generation of bias magnetic flux, when it is subject to base motion, and its control performance is experimentally evaluated. The base motion of AMB system is modeled as the dynamic disturbances in the gravity and base excitation forces. To effectively compensate for the disturbances, the angle feed-forward controller based on the inverse dynamic model and the acceleration feed-forward controller based on the normalized filtered-X LMS algorithm are proposed. The performance test of the prototype AMB system is carried out, when the system is mounted on rate table. The experimental results show that the performance of the proposed controllers for the AMB system is satisfactory in compensating for the disturbances due to the base motion.

Design of active magnetic bearing system for moving vehicles (이동 차량 탑재용 전자기 베어링 시스템 설계)

  • Kim, Ha-Yong;Sim, Hyun-Sik;Lee, Chong-Won;Kang, Tae-Ha
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.486-489
    • /
    • 2004
  • The active magnetic bearing (AMB) systems mounted in moving vehicles are exposed to the disturbances due to the base motion, often leading to malfunction or damage as well as inaccurate positioning of the systems. Thus, in the controller design of such AMB systems, robustness to base disturbances becomes an essential requirement. In this study, effective control schemes are proposed for the homo-polar AMB system, which uses permanent magnets for generation of bias magnetic flux, when it is subject to base motion, and its control performance is experimentally evaluated. The base motion of AMB system is modeled as the dynamic disturbances in the gravity and base excitation forces. To effectively compensate for the disturbances, the angle feed-forward controller based on the inverse dynamic model and the acceleration feed-forward controller based on the normalized filtered-X LMS algorithm are proposed. The performance test of the prototype AMB system is carried out, when the system is mounted on rate table. The experimental results show that the performance of the proposed controllers for the AMB system is satisfactory in compensating for the disturbances due to the base motion.

  • PDF

Disturbance Torque Suppression Control of Servo Motors for Missile Fin Actuators (미사일 Fin 액츄에이터용 서보모터의 외란 토크 억제 제어)

  • Kim, Chang-Hwan
    • Journal of National Security and Military Science
    • /
    • s.1
    • /
    • pp.311-343
    • /
    • 2003
  • In this paper, we propose a generalized disturbance torque suppression control scheme of servo motors for missile fin actuators. Our controller consists of both a model based feed-forward controller and a stabilizing feedback controller. The feed-forward controller is designed such that the output of nominal plant tracks perfectly the reference position command with a desired dynamic characteristics. The feedback controller stabilizes the overall closed loop system. Furthermore, the feedback controller contains a free function that can be chosen arbitrary. The free function can be designed so as to achieve both the suppression of disturbances and the robustness to model uncertainties. In order to illuminate the superior performance of our control scheme to the conventional ones, we present some simulation results.

  • PDF

Design of robust stable hybrid controllers for active noise/vibration control (능동 소음 및 진동 제어에 사용되는 강인안정한 하이브리드 제어기의 설계)

  • Oh, Shi-Hwan;Park, Young-Jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.431-436
    • /
    • 2000
  • Adaptive feed forward control algorithms based largely upon LMS approach have developed in recent two decades, and they have been widely applied to practical sound and vibration control problems in the case of the reference signal is available. Feedforward control can be applied only when reference signals can be measured or regenerated, while feedback controllers are used to reduce; sound and vibration when reference signals are not available. In recent years, hybrid control schemes in which adaptive feed forward controllers are combined with feedback ones have been studied based on simulations and experiments. The results have shown that the hybrid control may have better control performances in convergence speed and steady state error than the single control schemes. Hybrid control has the advantages of improving stability and performance as well as the disturbance rejection property. However, little effort has been made to the analysis or interpretation of hybrid control systems. In this study, we discussed the feedback controller effects on the stability of feed forward control algorithm in the presence of uncertain error path and a simple example showed that a stable feedback controller could make the feedforward controller unstable. A design criterion of feedback controllers is proposed in order to guarantee the stability of feedforward algorithms in the presence of error paths with uncertainties.

  • PDF

Co-design of the LCL Filter and Control for Grid-Connected Inverters

  • Zhang, Yu;Xue, Mingyu;Li, Minying;Kang, Yong;Guerrero, Josep M.
    • Journal of Power Electronics
    • /
    • v.14 no.5
    • /
    • pp.1047-1056
    • /
    • 2014
  • In most grid-connected inverters (GCI) with an LCL filter, since the design of both the LCL filter and the controller is done separately, considerable tuning efforts have to be exerted when compared to inverters using an L filter. Consequently, an integrated co-design of the filter and the controller for an LCL-type GCI is proposed in this paper. The control strategy includes only a PI current controller and a proportional grid voltage feed-forward controller. The capacitor is removed from the LCL filer and the design procedure starts from an L-type GCI with a PI current controller. After the PI controller has been settled, the capacitor is added back to the filter. Hence, it introduces a resonance frequency, which is identified based on the crossover frequencies to accommodate the preset PI controller. Using the proposed co-design method, harmonic standards are satisfied and other practical constraints are met. Furthermore, the grid voltage feed-forward control can bring an inherent damping characteristic. In such a way, the good control performance offered by the original L-type GCI and the sharp harmonic attenuation offered by the latter designed LCL filter can be well integrated. Moreover, only the grid current and grid voltage are sensed. Simulation and experimental results verify the feasibility of the proposed design methodology.

Dynamic Characteristics Improvement of a Step-Down Chopper Using Load Current Feed-Forward Compensator (부하전류 전향보상기를 이용한 강압쵸퍼의 동특성 항상)

  • Chun, Ji-Young;Jeon, Kee-Young;Chung, Chun-Byung;Han, Kyung-Hee
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.12
    • /
    • pp.29-35
    • /
    • 2008
  • In this paper, The author present a load current feed-forward compensator by method that improve voltage controller of Step-down Chopper to get stable output voltage to sudden change of load current. To confirm the characteristics of a presented load current feed-forward compensator compared each transfer function of whole system that load current feed-forward compensator is added with transfer function of whole system that existent voltage controller is included using Mason gains formula in Root locus and Bode diagram. As a result the pole of system is improved, extreme point of the wave and system improves, and size of peak value and phase margin of break frequency in resonance frequency confirmed that is good. Therefore, presented control technique could confirm that reduce influence by perturbation and improves stationary state and dynamic characteristics in output of Step-down Chopper.

A study on the optimal tuning of the hydraulic motion driver parameter by using RCGA (유압 모션 제어기의 최적 제어인자 튜닝에 관한 연구)

  • Shin, Suk-Shin;Noh, Jong-Ho;Park, Jong-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.1
    • /
    • pp.39-47
    • /
    • 2014
  • In this study, 2 degree of freedom PID controller is added to the conventional feed-forward controller for the purpose of improving its limitations such as set-point of tracking performance and disturbance suppression performance in the conventional PID controller. And the controller parameters optimization as a Real Coded Genetic Algorithm (RCGA) is used. Simulation and experiments verify the performance of the controller.