• Title/Summary/Keyword: Feed plants

Search Result 259, Processing Time 0.031 seconds

Integrated engineering environment for the process FEED of offshore oil and gas production plants

  • Hwang, Ji-Hyun;Roh, Myung-Il;Lee, Kyu-Yeul
    • Ocean Systems Engineering
    • /
    • v.2 no.1
    • /
    • pp.49-68
    • /
    • 2012
  • In this paper, an offshore process front end engineering design (FEED) method is systematically introduced and reviewed to enable efficient offshore oil and gas production plant engineering. An integrated process engineering environment is also presented for the topside systems of a liquefied natural gas floating production, storage, and offloading (LNG FPSO) unit, based on the concepts and procedures for the process FEED of general offshore production plants. Various activities of the general process FEED scheme are first summarized, and then the offshore process FEED method, which is applicable to all types of offshore oil and gas production plants, is presented. The integrated process engineering environment is presented according to the aforementioned FEED method. Finally, the offshore process FEED method is applied to the topside systems of an LNG FPSO in order to verify the validity and applicability of the FEED method.

Effects of Maturing Stages on Chemical Composition for Feed and in vitro Dry Matter Digestibility of Triticale (Triticale의 사료성분과 in vitro 건물소화율에 미치는 생육시기의 촬영)

  • ;Kazuo Ataku
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.20 no.3
    • /
    • pp.227-232
    • /
    • 2000
  • Triticale(Moniko, Presto, Tewo), wheat(Kitami 66, Tsukisarnul, chihoku) and rye(Almo, Warko, Mardar) were harvested in heading, milk, dough and ripe stage. Effects of various harvesting stage on the feed chemical composition and in vitro digestibility(IVDMD) was investigated in these species and varieties. 1. Dry matter yield increased with advancing maturity regardless of forage species. Among the species triticale plants showed the highest yield. 2. The chemical composition of triticale plants in view of feed value generally placed between wheat and rye plants. 3. IVDMDs of triticale plants decreased from heading to dough stage and then increased at yellow ripe stage, while thoes of wheat and rye plants decreased with advancing maturity. Among plant species triticale. plants showed the highest IVDMD at heading and yellow ripe stage, while rye plants showed the lowest value throughout the maturity.

  • PDF

The Development of Feed-Water Flow Controller of Boiler Feed-Water Pump in 500MW Class Coal-Fired Power Plant (500MW급 석탄화력발전소 보일러 급수펌프 유량 제어기 개발)

  • Lim, Geon-Pyo;Choi, In-Kyu;Park, Doo-Yong;Jeong, Tae-Won;Kim, Gun-Jung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.9
    • /
    • pp.1663-1672
    • /
    • 2010
  • The boiler feed-water pump controllers which can be applied to 500MW class coal fired power plants was developed. The validity of the developed controllers was shown via the applied test result in a power plant. It is expected that the developed controllers are used to retrofit the existing controllers that have surpassed their expected service life and have limited spare parts, and contributes to the stable operation of plants. Based on the collected data and analysis, new control schemes were developed and implemented during the overhaul period in the new control systems. During normal operation, feed water could be supplied to the boiler with the capability of the 1600t/h flow without any problems in automatic mode of controllers. In this study, the feed-water pump controllers were developed successfully. In addition, it is expected that the developed controllers can make the plant operation more stable and can be applied to a lot of power plants.

Improving productivity in rabbits by using some natural feed additives under hot environmental conditions - A review

  • Magdy Abdelsalam;Moataz Fathi
    • Animal Bioscience
    • /
    • v.36 no.4
    • /
    • pp.540-554
    • /
    • 2023
  • Heat stress is a major challenge to animal production in tropical and subtropical climates. Rabbits suffer from heat stress more than farm animals because they have few sweat glands, and their bodies are covered with thick fur. Intensive farming relies on antibiotics as antimicrobials or growth promoters to increase animals' productivity and health. However, the European Union and many countries have banned or restricted the use of antibiotics in animal feed for human health concerns. Several studies have found that replacing antibiotics in rabbit feed with natural plants or feed additives increases productivity and improves immune capacity, especially under heat stress conditions. Growth performance, immune response, gut microflora, and carcass yield may be increased in rabbits fed a diet supplemented with some natural plants and/or propolis. In this review article, we discuss and summarize the effects of some herbs and plant extracts as alternative feed additives on rabbit productivity, especially for those raised under hot ambient temperatures.

Offshore Process FEED(Front End Engineering Design) Method for Integrated Process Engineering (통합 프로세스 엔지니어링을 위한 해양 프로세스 기본 설계 방법론)

  • Hwang, Ji-Hyun;Roh, Myung-Il;Cha, Ju-Hwan;Lee, Kyu-Yeul
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.2
    • /
    • pp.265-277
    • /
    • 2010
  • In this study, an offshore process FEED(Front End Engineering Design) method is systematically established to perform integrated process engineering for topsides systems of LNG FPSO(Floating, Production, Storage, and Off-loading unit) based on the concepts and procedures for the process FEED of general offshore production plants. First, various activities of the general process FEED engineering are summarized, and then the offshore process FEED method, which is suitable for application to all types of offshore oil and gas production plants, is proposed. Second, an integrated process engineering environment is built based on the proposed FEED method. Finally, the integrated process engineering environment is applied to topsides systems of an LNG FPSO in order to verify the validity and applicability of the proposed FEED method. As a result, it is shown that the proposed FEED method can be applied to the process FEED engineering of FPSOs and moreover will be able to contribute to perform successful offshore projects in the future.

Agricultural Systems for Saline Soil: The Potential Role of Livestock

  • Masters, D.G.;Norman, H.C.;Barrett-Lennard, E.G.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.2
    • /
    • pp.296-300
    • /
    • 2005
  • Human-induced soil salinity is becoming a major threat to agriculture across the world. This salinisation occurs in both irrigated and rain-fed agricultural zones with the highest proportions in the arid and semi-arid environments. Livestock can play an important role in the management and rehabilitation of this land. There are a range of plants that grow in saline soils and these have been used as animal feed. In many situations, animal production has been poor as a result of low edible biomass production, low nutritive value, depressed appetite, or a reduction in efficiency of energy use. Feeding systems are proposed that maximise the feeding value of plants growing on saline land and integrate their use with other feed resources available within mixed livestock and crop farming systems. Salt-tolerant pastures, particularly the chenopod shrubs, have moderate digestible energy and high crude protein. For this reason they represent a good supplement for poor quality pastures and crop residues. The use of salt-tolerant pasture systems not only provides feed for livestock but also may act as a bio-drain to lower saline water tables and improve the soil for growth of alternative less salt tolerant plants. In the longer term there are opportunities to identify and select more appropriate plants and animals for saline agriculture.

Monthly & regional utilization factor of PV Plants in 2009, Korea (2009년 태양광발전소 월별 및 지역별 이용률 분석)

  • Kim, Yangil;Yang, Sungbae;Ryu, Sungho;Oh, Seokhwan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.65.1-65.1
    • /
    • 2010
  • KPX(Korea Power Exchange) has been supervising FIT(Feed-in-tariff) for renewable energy power plants and supported 289MW photovoltaic power plants with Electric Power Industry Basis Fund in 2009. In this paper, we'll analyze utilization factor of these PV power plants in 2009 and for the latest 3 years and finally utilization factor of other renewable energy power plants in 2009.

  • PDF

Appearance/Instance of Genetically Modified Maize at Grain Receiving Harbors and Along Transportation Routes in Korea

  • Han, Sung Min;Kim, Do Young;Uddin, Md. Romij;Hwang, Ki Seon;Lee, Bumkyu;Kim, Chang-Gi;Park, Kee Woong
    • Weed & Turfgrass Science
    • /
    • v.3 no.3
    • /
    • pp.221-224
    • /
    • 2014
  • Genetically modified (GM) crops are not permitted to be cultivated in Korea, but can only be imported as food or feed purposes. The import of GM crops has sharply increased in recent years, thus raising concerns with regard to the unintentional escape of these crops during transport and manufacturing as well as the subsequent contamination of local, non-GM plants. Hence, monitoring of GM crops was studied in or outside of grain receiving ports as well as from feed-processing plants in Korea during July 2008. We observed spilled maize grains and established plants primarily in storage facilities that are exposed around the harbors and near transportation routes of the feed-processing areas. Based on the PCR analyses, a total of 17 GM maize plants and 11 seeds were found among the samples. In most cases, the established maize plants found in this study were at the vegetative stage and thus failed to reach the reproductive stage. This study concludes that, in order to prevent a genetic admixture in the local environment for GM crops or seeds, frequent monitoring work and proper action should be taken.

Cost Reduction for Small-Scale Desalination Plants (소규모 해수담수화 시설의 생산비용 절감 방안)

  • Park, Nam-Sik;Park, Jun-Yeong;Mun, Yu-Ri;Kim, Ja-Kyum
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.10
    • /
    • pp.809-817
    • /
    • 2011
  • We analyzed various cost components for approximately 40 small-scale island desalination plants operated by K-water. A significant factor affecting desalination cost was found, and we proposed a way to reduce desalination costs. All plants considered were reverse osmosis (RO) facilities. TDS concentrations of feed water varied from less than 1,000 mg/L (practically considered freshwater) to over 30,000 mg/L (nearly seawater). Analysis of desalination costs from 2005 to 2009 indicated that maintenance, labor, and energy were the three biggest components that accounted for 50.6%, 36.9% and 7.8%, respectively. It was well known that TDS of feed water directly affected energy needed for RO process. In this study we found that maintenance cost was also directly related to feed water TDS. This finding indicated that lowering feed water TDS might result in significant desalination cost reduction.

Removal of iron oxide scale from boiler feed-water in thermal power plant by high gradient magnetic separation: field experiment

  • Akiyama, Yoko;Li, Suqin;Akiyama, Koshiro;Mori, Tatsuya;Okada, Hidehiko;Hirota, Noriyuki;Yamaji, Tsuyoshi;Matsuura, Hideki;Namba, Seitoku;Sekine, Tomokazu;Mishima, Fumihito;Nishijima, Shigehiro
    • Progress in Superconductivity and Cryogenics
    • /
    • v.23 no.3
    • /
    • pp.14-19
    • /
    • 2021
  • The reduction of carbon dioxide emissions becomes a global issue, the main source of carbon dioxide emissions in the Asian region is the energy conversion sector, especially coal-fired power plants. We are working to develop technologies that will at least limit the increase in carbon dioxide emissions from the thermal power plants as one way to reduce carbon dioxide emissions. Our research aims to reduce carbon dioxide emissions by removing iron oxide scale from the feedwater system of thermal power plants using a superconducting high-gradient magnetic separation (HGMS) system, thereby reducing the loss of power generation efficiency. In this paper, the background of thermal power plants in Asia is outlined, followed by a case study of the introduction of a chemical cleaning line at an actual thermal power plant in Japan, and the possibility of introducing it into the thermal power plants in China based on the results.