• Title/Summary/Keyword: Feed Type

Search Result 888, Processing Time 0.026 seconds

Simulation of Gravity Feed Oil for Aeroplane

  • Lu, Yaguo;Huang, Shengqin;Liu, Zhenxia
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.732-736
    • /
    • 2008
  • The traditional method to calculate the gravity feed is to assume that only one tank in fuel system supplies the needed fuel to the engine, and then calculated for the single branch. Actually, all fuel tanks compete for supplying oil. Our method takes into consideration all fuel tanks and therefore, we believe, our method is intrinsically superior to traditional methods and is closer to understanding the real seriousness of the oil supply situation. Firstly, the thesis gives the mathematical model for fuel flow pipe, pump, check valve and the simulation model for fuel tank. On the basis of flow network theory and time difference method, we established a new calculation method for gravity feed oil of aeroplane fuel system, secondly. This model can solve the multiple-branch and transient process simulation of gravity feed oil. Finally, we give a numerical example for a certain type of aircraft, achieved the variations of oil level and flow mass per second of each oil tanks. In addition, we also obtained the variations of the oil pressure of the engine inlet, and predicted the maximum time that the aeroplane could fly safely under gravity feed. These variations show that our proposed method of calculations is satisfactory.

  • PDF

Off-line Multicritera Optimization of Creep Feed Ceramic Grinding Process

  • Chen Ming-Kuen
    • Proceedings of the Korean Society for Quality Management Conference
    • /
    • 1998.11a
    • /
    • pp.680-695
    • /
    • 1998
  • The objective of this study is to optimize the responses of the creep feed ceramic grinding process simultaneously by an off-1ine multicriteria optimization methodology. The responses considered as objectives are material removal rate, flexural strength, normal grinding force, workpiece surface roughness and grinder power. Alumina material was ground by the creep feed grinding mode using superabrasive grinding wheels. The process variables optimized for the above objectives include grinding wheel specification, such as bond type, mesh size, and grit concentration, and grinding process parameters, such as depth of cut and feed rate. A weighting method transforms the multi-objective problem into a single-objective programming format and then, by parametric variation of weights, the set of non-dominated optimum solutions are obtained. Finally, the multi-objective optimization methodology was tested by a sensitivity analysis to check the stability of the model.

  • PDF

A Large-Signal Analysis of a Ring Oscillator with Feed-Forward and Negative Skewed Delay (부 스큐 지연 방식과 피드포워드 방식을 사용한 링 발진기의 대신호 해석)

  • Lee, Jeong-Kwang;Yi, Soon-Jai;Jeong, Hang-Geun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.7
    • /
    • pp.1332-1339
    • /
    • 2010
  • This paper presents a large signal analysis of ring-type oscillators with feed forward and negative skewed delay scheme. The analysis yields the frequency increase factor due to two schemes. The large signal analysis is needed, because small signal model is limited to the initial stage of oscillation[1]. For verification of the frequency increase factor, simulation were done under the same conditions for the two different types of ring oscillators, i.e., with and without feed forward and negative skewed delay scheme. Simulation results are in good agreement with predictions based on analysis.

Expert System for optimal cutting speed and feed rate selection (최적 절삭속도및 피이드 선정 전문가 시스템)

  • Lee, Keon-Buem;Kim, Yearn-Min
    • IE interfaces
    • /
    • v.9 no.1
    • /
    • pp.1-10
    • /
    • 1996
  • In this study, expert system for the selection of the optimal cutting speed and feed rate was developed using NEXPERT system shell. The NC system has been usually used inefficiently because the input command, which contains cutting speed, feed-rate and the depth of cut, is fixed value which depends on principally operator's experience and machining handbooks providing a guideline for applicable ranges. On the other hand, the optimal cutting conditions vary with time, and depend on tool and machine characteristics, work materials, and cost factor and so on. In this study, if cutting factors, such as, cutting method, material type, cutting depth, and tool nose radius are specified, our expert system gets the information about the standard cutting speed form the cutting speed database, and provides optimum feed rate for these cutting conditions. This cutting speed database can be updated by inputting valid cutting speed which is obtained form the practices.

  • PDF

Design and Fabrication of a Microstrip Patch Antenna with H-shape Aperture-Coupled structure for PCS Repeater (H자형 개구 결합구조를 갖는 PCS 중계기용 마이크로스트립 패치 안테나 설계 및 제작)

  • Lee, Jung-Gi;Jeoung, Chan-Gwoun;Kang, Young-Jin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.3
    • /
    • pp.465-470
    • /
    • 2007
  • This paper is designed and producted the microstrip patch antenna which used aperture coupled feed structure, and had a comparatively hish gain and headband characteristic with a PCS substitution repeater antenna. The proposed antenna transformed a coupled slot into a H-type in order to improve a characteristic of a general aperture coupled feed antenna. It is this H-type form slot reduces back lobe from the antenna backside at the same time that a coupling between a power feed and patches is iccreased, and to have maximized a gain of an antenna. As a result of having measured the antenna which the VSWR was 1.5 or below and tied up the gain than 7.5dBi in the $1750{\sim}1870$[MHz] that was a PCS substitution, and a beamwidth became in $80^{\circ}$ and radio waves shadow was local, but accomplishment did PCS mobile communication service in building me smoothly, but confirmed what practical use can become.

Development and Verification of the Automated Cow-Feeding System Driven by AGV (무인이송로봇기반 자동 소사료 공급 시스템 개발 및 검증)

  • Ahn, Sung-Su;Lee, Yong-Chan;Yoo, Ji-Hun;Lee, Yun-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.3
    • /
    • pp.232-241
    • /
    • 2017
  • This paper presents an automated cow-feeding system based on an AGV and screw conveyor for domestic livestock farms, which are becoming larger and more commercialized. The system includes a hopper module for loading pellet-type mixed feed at the top of the system, a transfer module mounted with a screw conveyor to transfer feed from the hopper module to the outlet module, an outlet module composed of belt conveyors, and an electromagnetic guided driving-type AGV. The weight of the loaded feed is measured by a load cell located under the transfer module. The system reads the feed discharge information stored in RFID tags installed in each cowshed cell, and a predetermined amount of feed is discharged while the AGV is moving. A cow-feed test system was constructed to determine the design parameters of the screw conveyor in the transfer module that determine the feeding capacity. These parameters include the screw's outer diameter, the screw shaft outer diameter, and screw pitch. The parameters were applied to the finalized cow-feed system construction. A DSP-based main controller and cow-feeding algorithm for different scenarios were also developed to control the system. Experimental results confirmed that the system could supply a total of 21 kg of feed uniformly at 420 g/s for a cowshed cell which has 7 cows. The driving distance was 5 m and the speed was 0.1 m/s. Thus, the proposed system could be applied to standardized domestic livestock farms.

Development of New Feed Mill Model Applying Combined Grind System (복합분쇄 시스템을 도입한 배합사료 공장의 새로운 모델 개발)

  • 박상빈;박경규;김태욱;윤홍선
    • Journal of Biosystems Engineering
    • /
    • v.22 no.4
    • /
    • pp.439-450
    • /
    • 1997
  • Most of Korean feed mill has a pregrind system which was suitable for the processing of less number of ingredients and finished products, and good for the mash type feed product. But industries has been changed in production volume and cost, and also from mash to further processed products such as pelleted and extruded. Therefore, Korea feed industries now should change the process, especially the grinding system from the current pregrind to other grind system, but this change will cost a lot of investment and also loosing current grinding system, and should have production shut down during the construction period. To solve these problems, combined grinding system based on a new model mill has been developed. The combined grind system is combination of pregrind and postgrind system, which has the advantages of those two grind systems, and also which can allow to utilize existing pregrind system continuously without any production interruption due to new postgrind system construction. This newly developed model has been applied to the feed mill expansion project of `B`feed company in 1994, and it was very successful application and showed excellent results as we intended. The new model mill, combined grind system applied can save fixed asset investment because old pregrind system can be used as is, and also can reduce production cost and improve product quality. And the possibility of critical production shut down can be much lowered. Within this new grinding model development, multi-screen combination system has been developed for the better grinding texture quality and safer operation. This new model mill with combined grind system will be applied by most feed manufacturing plant and may enhance their production competitiveness, and the further study and development should be continued.

  • PDF

Sensor and actuator design for displacement control of continuous systems

  • Krommer, Michael;Irschik, Hans
    • Smart Structures and Systems
    • /
    • v.3 no.2
    • /
    • pp.147-172
    • /
    • 2007
  • The present paper is concerned with the design of distributed sensors and actuators. Strain type sensors and actuators are considered with their intensity continuously distributed throughout a continuous structure. The sensors measure a weighted average of the strain tensor. As a starting point for their design we introduce the concept of collocated sensors and actuators as well as the so-called natural output. Then we utilize the principle of virtual work for an auxiliary quasi-static problem to assign a mechanical interpretation to the natural output of the sensors to be designed. Therefore, we take the virtual displacements in the principle of virtual work as that part of the displacement in the original problem, which characterizes the deviation from a desired one. We introduce different kinds of distributed sensors, each of them with a mechanical interpretation other than a weighted average of the strain tensor. Additionally, we assign a mechanical interpretation to the collocated actuators as well; for that purpose we use an extended body force analogy. The sensors and actuators are applied to solve the displacement tracking problem for continuous structures; i.e., the problem of enforcing a desired displacement field. We discuss feed forward and feed back control. In the case of feed back control we show that a PD controller can stabilize the continuous system. Finally, a numerical example is presented. A desired deflection of a clamped-clamped beam is tracked by means of feed forward control, feed back control and a combination of the two.