• Title/Summary/Keyword: Feed Structure

Search Result 559, Processing Time 0.026 seconds

Fundamentals of Particle Fouling in Membrane Processes

  • Bhattacharjee Subir;Hong Seungkwan
    • Korean Membrane Journal
    • /
    • v.7 no.1
    • /
    • pp.1-18
    • /
    • 2005
  • The permeate flux decline due to membrane fouling can be addressed using a variety of theoretical stand-points. Judicious selection of an appropriate theory is a key toward successful prediction of the permeate flux. The essential criterion f3r such a decision appears to be a detailed characterization of the feed solution and membrane properties. Modem theories are capable of accurately predicting several properties of colloidal systems that are important in membrane separation processes from fundamental information pertaining to the particle size, charge, and solution ionic strength. Based on such information, it is relatively straight-forward to determine the properties of the concentrated colloidal dispersion in a polarized layer or the cake layer properties. Incorporation of such information in the framework of the standard theories of membrane filtration, namely, the convective diffusion equation coupled with an appropriate permeate transport model, can lead to reasonably accurate prediction of the permeate flux due to colloidal fouling. The schematic of the essential approach has been delineated in Figure 5. The modern approaches based on appropriate cell models appear to predict the permeate flux behavior in crossflow membrane filtration processes quite accurately without invoking novel theoretical descriptions of particle back transport mechanisms or depending on adjust-able parameters. Such agreements have been observed for a wide range of particle size ranging from small proteins like BSA (diameter ${\~}$6 nm) to latex suspensions (diameter ${\~}1\;{\mu}m$). There we, however, several areas that need further exploration. Some of these include: 1) A clear mechanistic description of the cake formation mechanisms that clearly identifies the disorder to order transition point in different colloidal systems. 2) Determining the structure of a cake layer based on the interparticle and hydrodynamic interactions instead of assuming a fixed geometrical structure on the basis of cell models. 3) Performing well controlled experiments where the cake deposition mechanism can be observed for small colloidal particles (< $1\;{\mu}m$). 4) A clear mechanistic description of the critical operating conditions (for instance, critical pressure) which can minimize the propensity of colloidal membrane fluting. 5) Developing theoretical approaches to account for polydisperse systems that can render the models capable of handing realistic feed solutions typically encountered in diverse applications of membrane filtration.

A Study on Bandwidth Broadening of U-slot Microstrip Patch Antenna Design with L-Shaped Inset-Feed Structure (L자형 Inset 급전구조를 갖는 U슬롯 마이크로스트립 패치 안테나의 광대역화에 관한 연구)

  • Kim, Jae-Yeon;Chang, Tae-Soon;Hur, Jung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.5
    • /
    • pp.33-39
    • /
    • 2021
  • In this study, we tried to find the correlation of the parameters and dual resonance of U-slot microstrip patch antenna with L-shaped Inset-feed structure and design broadband antenna using them. In the first step, we classified cases where dual resonance occurs through changes in antenna parameters that affect antenna performance. In the second step, we correlated each antenna parameter to the location and intensity of the resonance point, and 3 dB bandwidth. Next, antenna simulation confirmed the process of designing to have wide bandwidth using the correlation in the second step previously presented in the U-slot antenna case with narrow bandwidth. Finally, we fabricated a designed antenna and demonstrated the validity of antenna bandwidth broadening through the correlation analysis.

Severe choline deficiency induces alternative splicing aberrance in optimized duck primary hepatocyte cultures

  • Zhao, Lulu;Cai, Hongying;Wu, Yongbao;Tian, Changfu;Wen, Zhiguo;Yang, Peilong
    • Animal Bioscience
    • /
    • v.35 no.11
    • /
    • pp.1787-1799
    • /
    • 2022
  • Objective: Choline deficiency, one main trigger for nonalcoholic fatty liver disease (NAFLD), is closely related to lipid metabolism disorder. Previous study in a choline-deficient model has largely focused on gene expression rather than gene structure, especially sparse are studies regarding to alternative splicing (AS). In modern life science research, primary hepatocytes culture technology facilitates such studies, which can accurately imitate liver activity in vitro and show unique superiority. Whereas limitations to traditional hepatocytes culture technology exist in terms of efficiency and operability. This study pursued an optimization culture method for duck primary hepatocytes to explore AS in choline-deficient model. Methods: We performed an optimization culture method for duck primary hepatocytes with multi-step digestion procedure from Pekin duck embryos. Subsequently a NAFLD model was constructed with choline-free medium. RNA-seq and further analysis by rMATS were performed to identify AS events alterations in choline-deficency duck primary hepatocytes. Results: The results showed E13 (embryonic day 13) to E15 is suitable to obtain hepatocytes, and the viability reached over 95% by trypan blue exclusion assay. Primary hepatocyte retained their biological function as well identified by Periodic Acid-Schiff staining method and Glucose-6-phosphate dehydrogenase activity assay, respectively. Meanwhile, genes of alb and afp and specific protein of albumin were detected to verify cultured hepatocytes. Immunofluorescence was used to evaluate purity of hepatocytes, presenting up to 90%. On this base, choline-deficient model was constructed and displayed significantly increase of intracellular triglyceride and cholesterol as reported previously. Intriguingly, our data suggested that AS events in choline-deficient model were implicated in pivotal biological processes as an aberrant transcriptional regulator, of which 16 genes were involved in lipid metabolism and highly enriched in glycerophospholipid metabolism. Conclusion: An effective and rapid protocol for obtaining duck primary hepatocytes was established, by which our findings manifested choline deficiency could induce the accumulation of lipid and result in aberrant AS events in hepatocytes, providing a novel insight into various AS in the metabolism role of choline.

Effects of Dietary Corticosterone on Yolk Colors and Eggshell Quality in Laying Hens

  • Kim, Yeon-Hwa;Kim, Jimin;Yoon, Hyung-Sook;Choi, Yang-Ho
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.6
    • /
    • pp.840-846
    • /
    • 2015
  • The objective of this study was to investigate the effects of dietary corticosterone on egg quality. For 2 weeks hens received either control or experimental diet containing corticosterone at 30 mg/kg diet. Feed intake and egg production were monitored daily, and body weight measured weekly. Egg weights and egg quality were measured daily. Corticosterone treatment resulted in a remarkable increase in feed intake and sharp decrease in egg production compared with control (p<0.05) whereas body weight remained unchanged. Decreased albumen height, but no changes in egg weight, led to decreased Haugh unit (p<0.05). Corticosterone caused elevated eggshell thickness (p<0.05) without altering weight and strength, suggesting possible changes in shell structure. Yolk color and redness were increased by corticosterone (p<0.05) but lightness and yellowness were either not changed or inconsistent over the time period of measurements. Increased concentrations in plasma were also found for corticosterone, glucose, cholesterol, creatinine, uric acid, albumin, aspartate aminotransferase, creatine kinase, lactate dehydrogenase, total protein, and amylase (p<0.05), suggesting that corticosterone increased protein breakdown, renal dysfunctions and pancreatitis. Together, the current results imply that dietary corticosterone affects egg quality such as yolk colors and shell thickness, in addition to its effects on feed intake and egg production.

Comparison of Pervaporation and Vapor Permeation Separation Processes for MTBE-methanol System

  • Kim, Youn-Kook;Lee, Keun-Bok;Rhim, Ji-Won
    • Korean Membrane Journal
    • /
    • v.2 no.1
    • /
    • pp.36-47
    • /
    • 2000
  • This paper deals with the separation of MTBE-methanol mixtures using crosslinked Poly(vinyl alcohol)(PVA) membranes with sulfur-succinic acid(SSA) as a crosslinking agent by pervaporation and vapor permeation technique. The operating temperatures, methanol concentration in feed mixtures, and SSA concentrations in PVA membranes were varied to investigate the separation performance of PVA/SSA membranes and the optimum separation characteristics by pervaporation and vapor permeation. And also, for PVA/SSA membranes, the swelling measurements were carried out to study the transport phenomena. The swelling measurements were carried out for pure MTBE and methanol, and MTBE/methanol=90/10, 80/20 mixtures using PVA/SSA membranes with varying SSA compositions. There are two factors of the membrane network and the hydrogen bonding. In pervaporation separation was also carried out for MTBE/methanol=90/10, 80/20 mixtures at various temperatures. The sulfuric acid group in SSA took an important role in the membrane performance. The crosslinking effect might be over the hydrogen bonding effect due to the sulfuric acid group at 3 and 5% SSA membranes, and this two factors act vice versa on 7% SSA membrane. In this case, the 5% SSA membrane shows the highest separation factor of 2,095 with the flux of 12.79g/㎡$.$hr for MTBE/methanol=80/20 mixtures at 30$^{\circ}C$ which this mixtures show near the azeotopic composition. Compared to pervaporation, vapor permeation showed less flux and similar separation factor. In this case, the flux decreased significantly because of compact structure and the effect of hydrogen bonding. In vapor permeation, density or concentration of methanol in vaporous feed is lower than that of methanol in liquid feed, as a result, the hydrogen bonding portion between the solvent and the hydroxyl group in PVA is reduced in vapor permeation. In this case, the 7% SSA membranes shows the highest separation factor of 2,187 with the flux of 4.84g/㎡$.$hr for MTBE/methanol=80/20 mixtures at 30$^{\circ}C$.

  • PDF

Cost.Benefit Risk Based Purchase Pricing Process Model for Feed in Tariffs of Photovoltaic Power Projects (비용.수익 리스크 기반 태양광사업 발전차액지원 기준가격 산정 프로세스 모델)

  • Kim, Se-Jong;Koo, Kyo-Jin
    • Korean Journal of Construction Engineering and Management
    • /
    • v.11 no.1
    • /
    • pp.113-121
    • /
    • 2010
  • Since the cut-down of the purchasing price of the feed in tariff(FIT) in 2008, the numbers of photovoltaic projects get decreased, contrary to investment expansion policy of government on renewable energy. The root cause of the decrease is the irrationality of the current purchasing price structure of FIT as well as the adversity of fund raising due to the global financial crisis. This study proposes the FIT calculating model (Cost & Benefit Risk Based Purchase Price Process : CBRP3) reflecting the fluctuation of cost and benefit risks. The first step is to establish the photovoltaic generation alternatives, and to calculate each distribution data of the investment and the power generation quantity. The FIT for each alternative is, then, assessed through simulations. Finally the proposed FIT scheme is compared to the present FIT scheme and future study subjects are derived.

Comparison of Pervaporation and Vapor Permeation Separation Processes for MTBE-methanol System

  • 김연국;이근복;임지원
    • Membrane Journal
    • /
    • v.2 no.1
    • /
    • pp.36-36
    • /
    • 1992
  • This paper deals with the separation of MTBE-methanol mixtures using crosslinked Poly(vinyl alcohol)(PVA) membranes with sulfur-succinic acid(SSA) as a crosslinking agent by pervaporation and vapor permeation technique. The operating temperatures, methanol concentration in feed mixtures, and SSA concentrations in PVA membranes were varied to investigate the separation performance of PVA/SSA membranes and the optimum separation characteristics by pervaporation and vapor permeation. And also, for PVA/SSA membranes, the swelling measurements were carried out to study the transport phenomena. The swelling measurements were carried out for pure MTBE and methanol, and MTBE/methanol=90/10, 80/20 mixtures using PVA/SSA membranes with varying SSA compositions. There are two factors of the membrane network and the hydrogen bonding. In pervaporation separation was also carried out for MTBE/methanol=90/10, 80/20 mixtures at various temperatures. The sulfuric acid group in SSA took an important role in the membrane performance. The crosslinking effect might be over the hydrogen bonding effect due to the sulfuric acid group at 3 and 5% SSA membranes, and this two factors act vice versa on 7% SSA membrane. In this case, the 5% SSA membrane shows the highest separation factor of 2,095 with the flux of 12.79g/㎡·hr for MTBE/methanol=80/20 mixtures at 30℃ which this mixtures show near the azeotopic composition. Compared to pervaporation, vapor permeation showed less flux and similar separation factor. In this case, the flux decreased significantly because of compact structure and the effect of hydrogen bonding. In vapor permeation, density or concentration of methanol in vaporous feed is lower than that of methanol in liquid feed, as a result, the hydrogen bonding portion between the solvent and the hydroxyl group in PVA is reduced in vapor permeation. In this case, the 7% SSA membranes shows the highest separation factor of 2,187 with the flux of 4.84g/㎡·hr for MTBE/methanol=80/20 mixtures at 30℃.

Prediction of ship power based on variation in deep feed-forward neural network

  • Lee, June-Beom;Roh, Myung-Il;Kim, Ki-Su
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.641-649
    • /
    • 2021
  • Fuel oil consumption (FOC) must be minimized to determine the economic route of a ship; hence, the ship power must be predicted prior to route planning. For this purpose, a numerical method using test results of a model has been widely used. However, predicting ship power using this method is challenging owing to the uncertainty of the model test. An onboard test should be conducted to solve this problem; however, it requires considerable resources and time. Therefore, in this study, a deep feed-forward neural network (DFN) is used to predict ship power using deep learning methods that involve data pattern recognition. To use data in the DFN, the input data and a label (output of prediction) should be configured. In this study, the input data are configured using ocean environmental data (wave height, wave period, wave direction, wind speed, wind direction, and sea surface temperature) and the ship's operational data (draft, speed, and heading). The ship power is selected as the label. In addition, various treatments have been used to improve the prediction accuracy. First, ocean environmental data related to wind and waves are preprocessed using values relative to the ship's velocity. Second, the structure of the DFN is changed based on the characteristics of the input data. Third, the prediction accuracy is analyzed using a combination comprising five hyperparameters (number of hidden layers, number of hidden nodes, learning rate, dropout, and gradient optimizer). Finally, k-means clustering is performed to analyze the effect of the sea state and ship operational status by categorizing it into several models. The performances of various prediction models are compared and analyzed using the DFN in this study.

Bacillus amyloliquefaciens and Saccharomyces cerevisiae feed supplements improve growth performance and gut mucosal architecture with modulations on cecal microbiota in red-feathered native chickens

  • Lee, Tzu-Tai;Chou, Chung-Hsi;Wang, Chinling;Lu, Hsuan-Ying;Yang, Wen-Yuan
    • Animal Bioscience
    • /
    • v.35 no.6
    • /
    • pp.869-883
    • /
    • 2022
  • Objective: The aim of study was to investigate the effects of in-feed supplementation of Bacillus amyloliquefaciens (BA) and Saccharomyces cerevisiae (SC) on growth performance, gut integrity, and microbiota modulations in red-feathered native chickens (RFCs). Methods: A total of 18,000 RFCs in a commercial farm were evenly assigned into two dietary treatments (control diet; 0.05% BA and 0.05% SC) by randomization and raised for 11 weeks in two separate houses. Fifty RFCs in each group were randomly selected and raised in the original house with the partition for performance evaluations at the age of 9 and 11 weeks. Six non-partitioned RFCs per group were randomly selected for analyses of intestinal architecture and 16S rRNA metagenomics. Results: Feeding BA and SC increased the body weight and body weight gain, significantly at the age of 11 weeks (p<0.05). The villus height/crypt ratio in the small intestines and Firmicutes to Bacteroidetes ratio were also notably increased (p<0.05). The supplementation did not disturb the microbial community structure but promote the featured microbial shifts characterized by the significant increments of Bernesiella, Prevotellaceae_NK3B31_group, and Butyrucimonas, following remarkable decrements of Bacteroides, Rikenellaceae_RC9_gut_group, and Succinatimonas in RFCs with growth benefits. Besides, functional pathways of peptidoglycan biosynthesis, nucleotide excision repair, glycolysis/gluconeogenesis, and aminoacyl transfer ribonucleic acid (tRNA) biosynthesis were significantly promoted (p<0.05). Conclusion: In-feed supplementation of BA and SC enhanced the growth performance, improved mucosal architectures in small intestines, and modulated the cecal microbiota and metabolic pathways in RFCs.

A Study on W-Band Monopulse Tracking System using Reflectarray Antenna (반사배열 안테나를 이용한 W대역 모노펄스 추적 시스템에 관한 연구)

  • Song, Hyejoo;Ko, Seulgi;Kim, Kichul;Pyo, Seongmin
    • Journal of IKEEE
    • /
    • v.26 no.1
    • /
    • pp.137-140
    • /
    • 2022
  • In this paper, we proposed a new W-band monopulse tracking system based on reflectarray antenna structure. The proposed reflectarray antenna monopulse tracking system consists of four feed horn antennas and a planar reflector using a microstrip reflectarray. The four feed horn antennas have a gain of 10 dBi and a half-power beam-width of 56 degrees symmetrically in the E/H plane. It was confirmed that the reflectarray antenna using one feed horn antenna has a size of 41.8 × 41.8 mm2, a gain of 26.8 dBi, and a half-power beam-width of about 5.6 degrees. The reflectarray monopulse tracking system using 4 feeding horn antennas is well matched from 75 GHz to 90 GHz, and the isolation is secured by more than 10 dB. Finally, the proposed system shows the tracking range of 5.98 degrees and the tracking error range was 0.02 degrees.