• 제목/요약/키워드: Feed Particle Size

검색결과 130건 처리시간 0.027초

Effects of feed form and particle size on growth performance, nutrient digestibility, carcass characteristics, and gastric health in growing-finishing pigs

  • Jo, Yun Yeong;Choi, Myung Jae;Chung, Woo Lim;Hong, Jin Su;Lim, Jong Seon;Kim, Yoo Yong
    • Animal Bioscience
    • /
    • 제34권6호
    • /
    • pp.1061-1069
    • /
    • 2021
  • Objective: This study was conducted to evaluate the effects of feed processing and particle size on growth performance, nutrient digestibility, carcass characteristics, and gastric health in growing-finishing pigs. Methods: A total of 360 growing pigs (22.64±0.014 kg initial body weight [BW]) were allocated to 1 of 6 treatments with 6 replicates by BW and sex, and 10 pigs were housed in one pen in a randomized complete block design. The BW and feed intake were recorded to calculate growth performance. For the digestibility trial, a total of 24 barrows with an initial BW of 33.65±0.372 kg were split into 6 treatments with a completely randomized design. Dietary treatments were designed by a 2×3 factorial arrangement of treatments based on two main factors, particle size (600, 750, 900 ㎛) and feed form (mash and pellet) of diet. Experimental diets were formulated to contain the requirements of the NRC (2012). Results: The BW and average daily gain were not changed by dietary treatments, and the feed intake of finishing pigs (wks 6 to 12) was increased when the pigs were fed a mash diet (p<0.05). For the overall period, the feed efficiency of pigs was improved with the pellet diet (p<0.01) and reduced particle size (p<0.05). The pellet diet had effects on increasing crude fat digestibility (p<0.01) relative to a mash diet, but there was no considerable change in dry matter and crude protein digestibilities by dietary treatments. In the evaluation of gastric health, a trend for an increased incidence of keratinization in the esophageal region was observed as particle size decreased (p = 0.07). Conclusion: Feed efficiency could be improved by pellet diet and reduced particle size. Nutrient digestibility, carcass characteristics, and gastric health were not affected by feed form, and particle size ranged from 600 to 900 ㎛.

Effects of feed form and feed particle size with dietary L-threonine supplementation on performance, carcass characteristics and blood biochemical parameters of broiler chickens

  • Rezaeipour, Vahid;Gazani, Sepideh
    • Journal of Animal Science and Technology
    • /
    • 제56권5호
    • /
    • pp.20.1-20.5
    • /
    • 2014
  • An experiment was conducted to evaluate the effect of form and particle size of feed supplemented with L-threonine on growth performance, carcass characteristic and blood biochemical parameters of broiler chickens. The experimental design was a $2{\times}2{\times}2$ factorial arrangement of treatments evaluating two feed forms (pellet or mash), two feed particle sizes (fine or course), and two inclusion rates of dietary L-threonine (with or without) which adopted from 7 to 42 days of age. In this experiment, 360 a day old chicks in two sexes were assigned in each treatment and each experimental unit was included 15 chicks. Feed consumption and weight gain were measured weekly. At 35 days of age, blood samples were taken to analysis blood biochemical parameters. At the end of the experimental period, two birds were slaughtered in each treatment and carcass analysis was carried out. The results showed that the effect of feed form on body weight gain and feed intake in whole of experimental period was significant (P < 0.05). Broilers fed pelleted diets had more weight gain than the mash group. Growth performance parameters were not affected by feed particle size and dietary L-threonine supplementation in whole of experimental period (P > 0.05). The results of carcass analysis showed that liver and gizzard relative weights were influenced by feed form (P < 0.05). However, pancreas and liver relative weights were affected by feed particle size and dietary L-threonine supplementation, respectively (P < 0.05). Triglyceride and VLDL levels were affected by feed form and dietary L-threonine supplementation (P < 0.05). The effect of feed particle size on blood biochemical parameters was not significant (P > 0.05). In conclusion, the experimental results indicated that feed form increased feed consumption and weight gain in whole of experimental period (1 to 42 days of age) while feed particle size and dietary L-threonine had no effect on broiler performance.

USE OF MOLD INHIBITOR FOR FEED STORAGE AND IMPROVED CHICK PERFORMANCE

  • Nahm, K.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제4권3호
    • /
    • pp.285-291
    • /
    • 1991
  • Two experiments were conducted to evaluate the effect of mold inhibitor in the ration which had two different protein levels (18% and 12%) and two different particle sizes (80 or 40% of the particles in the ration less than 1.19 mm). The experimental diets with ave. 12.7% moisture which were treated at the level of 0.1% mold inhibitor were stored under 85% humidity and at $29{\pm}1^{\circ}C$ for 10 to 40 days. In experiment 1, after 40 days of storage the $CO_2$ production in the feed treated with mold inhibitor was higher (p < 0.01) than when 40% of the ration's panicle size was 1.19 mm. Aflatoxin production in the experimental diet with mold inhibitor was affected (p<0.05) by the levels of protein and the different particle size ranges after 40 days storage. The interaction of protein levels and particle size ranges on the anatoxin and $CO_2$ production was significant (p<0.05) at 40 days storage. In experiment 2, there was a decrease in total body weight gain and total feed intake observed in chicks fed the untreated diet of 18% protein with 40% of the particles in the ration less than 1.19 mm stored for 40 days. Feed conversion was depressed (p<0.05) in the chicks fed the untreated diets of both particle sizes. Particle size X types of feed interaction in feed conversion was significant (p<0.05).

Effects of processing, particle size and moisturizing of sorghum-based feeds on pellet quality and broiler production

  • da Silva, Patricia Garcia;Oliveira, Luana Martins Schaly;de Oliveira, Nayanne Rodrigues;de Moura, Fabio Ataides Junior;Silva, Maura Regina Sousa;Cordeiro, Deibity Alves;Minafra, Cibele Silva;dos Santo, Fabiana Ramos
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제31권1호
    • /
    • pp.98-105
    • /
    • 2018
  • Objective: This study aimed to assess the effect of pelleted and expanded sorghum-based feeds prepared with different moisture levels and particle size of ingredients on metabolizable energy, ileal digestibility of amino acids and broiler performance. Methods: The experiment was performed with 720 male broiler chicks of the Cobb strain, with treatments of six replications, with 15 birds each; they were arranged in a completely randomized design and $2{\times}2{\times}2$ factorial scheme (pelleted or expanded feed processing, 0.8% or 1.6% moisture addition in the mixer, and particle size of 650 or 850 microns). Results: Higher pellet quality (pellets, % and pellet durability index [PDI]) was obtained in expanded diets and inclusion of 1.6% moisture. The particle size of 850 microns increased the PDI of final diet. All studied treatments had no significant effect on weight gain and broiler carcass and cut yields. Lower feed conversion occurred for birds fed pelleted feed at 42 d. The highest apparent metabolizable energy (AME) and apparent metabolizable energy corrected to zero nitrogen balance (AMEn) values of feed in the initial rearing phase (10 to 13 days) were observed in birds fed pelleted feed or for feed prepared with 1.6% moisture. The highest ileal digestibility coefficients of amino acids were obtained with the consumption of pelleted feed prepared with a particle size of 650 microns and 1.6% moisture. Conclusion: Pelleted feed prepared with a milling particle size of 650 microns and 1.6% moisture provided increased ileal digestibility of amino acids and AMEn in the starter period. However, the expanded feed improved pellet quality and feed conversion of broilers at 42 days of age. We conclude that factors such as moisture, particle size and processing affect the pellet quality, and therefore should be considered when attempting to optimize broiler performance.

Effects of Feed Particle Size and Feed Form on Growth Performance, Nutrient Metabolizability and Intestinal Morphology in Broiler Chickens

  • Zang, J.J.;Piao, X.S.;Huang, D.S.;Wang, J.J.;Ma, X.;Ma, Yongxi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제22권1호
    • /
    • pp.107-112
    • /
    • 2009
  • This study was conducted to investigate the effect of feed particle size and feed form on growth performance, nutrient metabolizability and intestinal morphology in broiler chickens. This experiment was a 2${\times}$2 factorial arrangement including two feed particle sizes (fine and coarse) and two feed forms (mash and pellet). A total of two hundred and eighty eight day-old male Arbor Acre broilers were used in this six week experiment. Birds were randomly allotted to four dietary treatments with six replicates per treatment and twelve birds per replicate. The results showed that pelleting diets resulted in greater ADG (p<0.01), greater ADFI (p<0.01) and lower feed to gain ratio (F/G) (p<0.05) during starter, grower and overall period. Also, pelleting improved both apparent metabolizable energy (AME) (p<0.01) and the apparent metabolizability of crude protein (p<0.05) and organic matter (p<0.05) regardless of the phase. Reduction of feed particle size enhanced AME (p<0.05) during d 19 to 21. Increased villus height (p<0.05) and crypt depth ratio (p< 0.05) within duodenum, jejunum, and ileum were observed in birds fed the pellet diet compared with those given the mash diet. In conclusion, results indicated that feed pellets might enhance performance by improving nutrient metabolizability and digestive tract development.

Corn Particle Size Affects Nutritional Value of Simple and Complex Diets for Nursery Pigs and Broiler Chicks

  • Kim, I.H.;Hancock, J.D.;Hong, J.W.;Cabrera, M.R.;Hines, R.H.;Behnke, K.C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제15권6호
    • /
    • pp.872-877
    • /
    • 2002
  • Two experiments were conducted to determine the effects of reducing particle size of corn from 1,000 to 500 ${\mu}m$ in simple and complex diets for nursery pigs and broiler chicks. In Exp 1., 192 nursery pigs were used in a 24 d growth assay. Treatments were: 1) 1,000 ${\mu}m$ corn in a simple diet; 2) 500 ${\mu}m$ corn in a simple diet; 3) 1,000 ${\mu}m$ corn in a complex diet; and 4) 500 ${\mu}m$ corn in a complex diet. Overall, pigs fed complex diets had 9% greater ADG (p<0.005) and 5% greater gain/feed (p<0.01) compared to pigs fed simple diets. Also, pigs fed the 500 ${\mu}m$ treatments had 3% better overall gain/feed than those fed the 1,000 ${\mu}m$ treatments (p<0.007). At d 9, apparent digestibilities of DM, N and GE were greater for complex diets and diets with smaller particle size (p<0.02). At d 23, there were no differences in nutrient digestibility resulting from diet complexity, but pigs fed diets with corn ground to 500 ${\mu}m$ had greater digestibility of DM (p<0.02) and GE (p<0.003) than pigs fed diets with corn ground to 1,000 ${\mu}m$. A second experiment was designed to determine if four days old broiler chicks were an acceptable model for predicting the effects of feed processing procedures on nursery pigs. Chicks fed complex diets had 3% greater gain/feed than chicks fed simple diets (p<0.001). Rate of gain and feed intake were improved by 3 and 2%, respectively, for chicks fed crumbled diets (p<0.03). However, there were several significant interactions among the main effects. For instance, crumbling did not affect gain/feed in chicks fed complex diets, but rate of gain and feed intake were increased by 7 and 6%, respectively, when simple diets were crumbled (diet complexity${\times}$diet form, p<0.001). Also, gain/feed of chicks was improved by 3% when particle size was reduced in meal diets, but not affected in chicks fed crumbles (diet form${\times}$particle size, p<0.005). Thus, our data suggested that reduction of particle size of corn was important for simple and complex diets and that a complex diet with 1,000 ${\mu}m$ corn gave no better performance than a simple diet with 500 ${\mu}m$ corn.

배합사료의 크기, 사육밀도 및 용존산소 농도가 넙치(Paralichthys olivaceus)의 성장에 미치는 영향 (Effects of Feed Particle Size, Stocking Density, and Dissolved Oxygen Concentration on the Growth of Olive Flounder Paralichthys olivaceus)

  • 김성삼;이진혁;김강웅;김경덕;이봉주;이경준
    • 한국수산과학회지
    • /
    • 제48권3호
    • /
    • pp.314-321
    • /
    • 2015
  • We performed three sets of feeding trials to establish the optimal feed size (Exp-I), stocking density (Exp-II), and dissolved oxygen level (DO) (Exp-III) for olive flounder Paralichthys olivaceus. In Exp-1, four replicate groups of fish ($53.6{\pm}0.9g$) were fed commercial diets with three particle sizes (small, medium, and large). In Exp-II, fish ($30.0{\pm}0.1g$) were reared at four stocking densities (1.8, 3.5, 5.3, and $7.1kg/m^3$). In Exp-III, fish ($187{\pm}1.48g$) were reared under two different DO levels (2-3 and 6-7 mg/L). In Exp-I, fish fed the large-particle diet gained significantly more weight and had a lower feed conversion ratio than fish fed the small- and medium-particle diets. In Exp-II, fish reared at 1.8 and $3.5kg/m^3$ gained slightly more weight and had lower feed conversion ratios than fish reared at 5.3 and $7.1kg/m^3$, although these differences were not significant. In Exp-III, negative effects were observed in the low DO groups. Therefore, under our experimental conditions, the optimal feed particle size, stocking density, and DO level for olive flounder were 9-9.4 mm, $3.5kg/m^3$, and 6-7 mg/L, respectively.

익스트루전 압력과 사료원료의 입자크기를 조절한 배합사료가 치어기 넙치 (Paralichthys olivaceus)의 성장에 미치는 영향 (Effects of Extrusion Pressure and Feed Ingredient Particle Size on Growth Performance in Olive Flounder Paralichthys olivaceus)

  • 조정현;이봉주;허상우;이승형;김강웅;임상구;손맹현
    • 한국수산과학회지
    • /
    • 제52권3호
    • /
    • pp.247-255
    • /
    • 2019
  • This study was conducted to investigate the effects of extrusion pressure and particle size of feed ingredients on the growth performance and plasma hormone activity in juvenile olive flounder Paralichthys olivaceus. Experimental diets were prepared with extrusion pressure manipulated by screw speed [low pressure (LP), 885 rpm/min; high pressure (HP), 708 rpm/min] and different dietary particle sizes [specific surface area: small (SS), $169.9m^2/kg$; large (LS), $67.4m^2/kg$] in a two-level factorial design. Four experimental diets (LP+SS, LP+LS, HP+SS, and HP+LS) were randomly assigned to 12 tanks (3 replicates) stocked with 20 fish (initial weight, 57 g) per tank. After a 4-week feeding trial, the observable trends of the main effects of extrusion pressure and particle size on growth performance showed that LP and SS enhanced fish weight gain. The plasma insulin-like growth factor-I level was significantly higher in fish fed the LP+SS diet than in fish fed the HP+SS diet. These results indicate that manipulation of the physical qualities of feed through adjustment of extrusion pressure and feed ingredient particle size may influence the growth performance of juvenile olive flounder, which should be considered in feed manufacture.

Impacts of Limestone Multi-particle Size on Production Performance, Egg Shell Quality, and Egg Quality in Laying Hens

  • Guo, X.Y.;Kim, I.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제25권6호
    • /
    • pp.839-844
    • /
    • 2012
  • This experiment was conducted to evaluate the effects of single or multi-particle size limestone on the egg shell quality, egg production, egg quality and feed intake in laying hens. A total of 280 laying hens (ISA brown) were used in this 10-wk trial. Laying hens were randomly assigned to 4 treatments with 14 replications per treatment and 5 adjacent cages as a replication (hens were caged individually). The experimental treatments were: i) L, basal diet+10% large particle limestone; ii) LS1, basal diet+8% large particle limestone+2% small particle limestone; iii) LS2, basal diet+6% large particle limestone+4% small particle limestone; iv) S, basal diet+10% small particle limestone. The egg production was unaffected by dietary treatments. The egg weight in S treatment was lighter than other treatments (p<0.05). The egg specific gravity in S treatment was lower than other treatments (p<0.05). The eggshell strength and eggshell thickness in S treatment were decreased when compared with other dietary treatments (p<0.05). The laying hens in LS1 and LS2 treatment had a higher average feed intake than the other two treatments (p<0.05). Collectively,the dietary multi-particle size limestone supplementation could be as efficient as large particle size limestone.

Happel Cell 모델을 이용한 막오염 지수 예측 (Prediction of Membrane Fouling Index by Using Happel Cell Model)

  • 박찬혁;김하나;홍승관
    • 상하수도학회지
    • /
    • 제19권5호
    • /
    • pp.632-638
    • /
    • 2005
  • Membrane fouling index such as Silt Density Index (SDI) and Modified Fouling Index (MFI) is an important parameter in design of the integrated RO/NF membrane processes for drinking water treatment. In this study, the effect of particle, membrane and feed water characteristics on membrane fouling index were investigated systematically. Higher fouling index values were observed when filtering suspensions with smaller particle size and higher feed particle concentration. Larger membrane resistance due to smaller pore size resulted in an increased membrane fouling index. The variations of feed water hardness and TDS concentrations did not show any impact on fouling index, suggesting that there were no significant colloidal interactions among particles and thus the porosity of particle cake layer accumulated on the membrane surface could be assumed to be 0.36 according to random packing density. Based on the experimental observations, fundamental membrane fouling index model was developed using Happel Cell. The effect of primary model parameters including particle size ($a_p$), particle concentration ($C_o$), membrane resistance ($R_m$), were accurately assessed without any fitting parameters, and the prediction of membrane fouling index such as MFI exhibited very good agreement with the experimental results.